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Abstract 
Agricultural sector is the backbone of human civilization, as it is the prominent source 

of nutrition for human beings. Additionally, it provides fodder to livestock which gives 

milk, wool, and other necessary products for humans. The demand for food is 

increasing day by day as the world’s population has been increasing exponentially over 

the past few decades. In order to fulfill such huge food demand, the growth of farming 

sector becomes essential. Early-stage plant disease diagnosis is a big challenge in the 

growth of farming sector, as it can minimize crop yield loss and maximize the farmer’s 

profit. 

Conventionally, farmers and plant pathologists manually examine the plants to detect 

probable diseases, which is quite a difficult and laborious task. Due to the technological 

advancements in computer vision, various researchers have utilized different Machine 

Learning (ML) or Deep Learning (DL) techniques in the literature for diagnosing plant 

diseases with the help of their digital leaf images. However, most of these research 

works have utilized large number of trainable weight parameters and large number of 

annotated leaf images for training their models.  

Therefore, the aim of this thesis is to develop a lightweight DL model that requires a 

smaller number of annotated leaf images for training, as annotating leaf images is a 

laborious and time-consuming task. The reason for choosing the DL model over the 

ML model lies in its ability to automatically extract important features from raw data, 

which eliminates the requirement of a separate feature extraction module. This thesis 

first proposes a lightweight DL model named PlantGhostNet for diagnosing a plant 

disease from leaf images.  

PlantGhostNet model utilizes the Ghost and Squeeze-and-Excitation modules to reduce 

the trainable weight parameters and improve the model’s performance, respectively. 

Ghost Module generates the feature maps in two phases. First, it generates few feature 

maps via conventional convolution operation. After that, it applies the cheap linear 

operations on the feature maps generated in the first phase to obtain the desired number 

of feature maps. Hence, the number of trainable weight parameters utilized in the Ghost 

Module are significantly lesser than the conventional convolution operation. Squeeze-
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and-Excitation Module adaptively prioritizes each channel of the input feature map by 

assigning them weights, resulting in better performance of the model. The effectiveness 

of the PlantGhostNet model is evaluated on the leaf images of peach plants extracted 

from the PlantVillage dataset. Experimental results demonstrate that the PlantGhostNet 

model achieved 99.51% accuracy in detecting bacterial spot disease of peach plants, 

and it utilizes roughly seventy-three thousand trainable weight parameters. Although 

the PlantGhostNet model requires minimum trainable weight parameters as compared 

to other counterparts, they are still high in number. Therefore, the next work of the 

thesis focuses on reducing trainable weight parameters further by a significant factor. 

Next, a lightweight hybrid model based on Convolutional Autoencoder (CAE), and 

Convolutional Neural Network (CNN) has been proposed in this thesis for detecting a 

plant disease from their leaf images. This model reduces the spatial size of input leaf 

images via CAE before classifying it with CNN, which results in significantly lesser 

number of training parameters. The proposed model uses only 9,914 trainable weight 

parameters and achieved 98.35% accuracy in detecting bacterial spot disease of peach 

plants. Though the PlantGhostNet model and lightweight hybrid DL model can identify 

a plant disease very efficiently and effectively, these models cannot diagnose multiple 

types of plant diseases with high accuracy. Therefore, in order to deal with this issue, a 

lightweight and improved Vision Transformer (ViT) model named TrIncNet has been 

proposed in this thesis. 

TrIncNet model can identify multiple types of plant diseases through their leaf images. 

This model encompasses of multiple linearly connected Trans-Inception blocks, which 

have been designed by replacing the Multi-Layer-Perceptron Module with the Inception 

Module in the encoder block of the ViT model. As a result of this replacement, the 

Trans-Inception block requires 32.67% lesser number of trainable weight parameters 

than the original encoder block of ViT. Unlike the ViT model, the TrIncNet model also 

employs skip connections around each Trans-Inception block to make the model more 

resistant towards the vanishing gradient problem. In order to showcase the applicability 

of the TrIncNet model in detecting plant diseases, it has been trained and tested on 

PlantVillage and Maize datasets. Experimental results showed that the TrIncNet model 
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outperformed existing state-of-the-art research works by achieving 99.93% and 96.93% 

accuracies on PlantVillage and Maize datasets, respectively. 

Disease severity is required in order to take necessary steps for curing the identified 

disease as it can provide a quantitative assessment of the damage caused by the 

pathogen of the identified disease. Hence, this thesis proposes a lightweight and few-

shot framework named PDSE-Lite for diagnosing plant diseases and estimating the 

severity of identified diseases. This framework is designed and developed in two stages. 

In the first stage, a lightweight CAE model is developed and trained to reconstruct leaf 

images from original leaf images with minimal reconstruction loss. In subsequent stage, 

pretrained layers of the CAE model built in the first stage are utilized to develop the 

image classification and segmentation models, which are then trained using Few-Shot-

Learning (FSL). Experimental results on the Apple-Tree-Leaf-Disease-Segmentation 

(ATLDS) dataset demonstrate that the PDSE-Lite framework can detect four types of 

apple leaf diseases with 98.35% accuracy and segment infected areas from diseased 

leaf images with 94.54% MeanIoU value by utilizing only two leaf images per class for 

model training. Therefore, the PDSE-Lite framework reduces the reliance on large 

manually annotated datasets and minimizes the human efforts required to create such 

datasets. This framework can also estimate the severity of the identified disease by 

calculating the percentage of diseased pixels out of the total leaf pixels, i.e., sum of 

healthy and diseased pixels present in the segmented leaf image. 

Lastly, an android mobile application named “PlantD2R2S-Lite” has been developed in 

this thesis for generating the advisory for curing the plant disease by identifying the 

plant disease and its severity from the captured leaf image. The application works in 

both English and Hindi language. PlantD2R2S-Lite application utilizes the pre-trained 

Bidirectional Encoder Representations from Transformers (BERT) model for 

generating advisory to cure the diagnosed plant disease. The pre-trained BERT model 

is fine-tuned on the text of two research papers that have detailed descriptions of apple 

leaf diseases and their management for testing its advisory generation functionality. 

The developed mobile application can work in remote locations also with weak or no 

Internet connectivity, as the disease detection and segmentation models, along with the 

BERT model have been embedded into the PlantD2R2S-Lite application. Experimental 
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results on the ATLDS dataset revealed that the developed application can diagnose 

apple leaf disease and segment the diseased lesions with high accuracy. Additionally, 

this mobile application requires the least space in the mobile device as compared to 

other applications developed in the literature. Therefore, it can also work on low-

computational powered smartphones.  

Hence, the PlantD2R2S-Lite application designed and developed in this thesis can help 

farmers in diagnosing plant diseases, highlighting diseased areas of leaf image, 

estimating the severity of identified diseases, and generating advisory for taking timely 

actions to cure the identified disease even in remote areas where Internet connectivity 

may not be strong. 
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1. Introduction 

Agriculture played a pivotal role in the development of human civilization. Majority of 

the world’s population is directly or indirectly dependent on the farming sector to fulfill 

their food requirements. Moreover, the agricultural sector significantly contributes to 

the economic growth of many agrarian countries. In India, this sector contributes 

around 18.3% of the country’s Gross Domestic Product (GDP), and half of the 

country’s workforce is associated with agriculture and its allied fields (Tomar, 2023). 

The world’s population has exponentially increased in the last few decades. 

Consequentially, the food demand is also proliferating day by day, and in order to fulfill 

such colossal food demand, the growth of agricultural sector is essential.  

Disease infestation in crops is one of the prominent challenges in the growth of farming 

sector, as it hampers both food grain quality and quantity. Diagnosing plant diseases in 

their earliest possible stages can significantly conquer this challenge because it has the 

potential to minimize crop yield loss and maximize the farmer’s profit, too. 

Conventionally, farmers or agricultural scientists manually examine the plant leaves to 

identify the probable type of disease. Thereafter, they evaluate the disease severity by 

utilizing their domain expertise and suggest the necessary actions to cure the plant 

disease.  

Due to technological advancements in the computer vision domain, various researchers 

have utilized different Machine Learning (ML) or Deep Learning (DL) techniques in 

the literature for diagnosing plant disease with the help of their digital leaf images. 

However, most of these research works have utilized DL models having large number 

of trainable weight parameters, which can significantly increase the model’s training as 

well as inference time. While there are numerous research works available on disease 

detection, the research works on plant disease severity estimation are relatively limited. 

Furthermore, disease severity is required in order to help farmers in prioritizing the 

actions to be taken based on the damage assessment.  

Research works focused on plant disease severity estimation require large number of 

annotated leaf images to train their models, and annotating large number of leaf images 
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is laborious and time-consuming. Additionally, to the best of our knowledge, none of 

the existing research work can generate bilingual advisory to cure plant diseases by 

considering disease type and severity both. Therefore, this motivated us to develop an 

effective and efficient plant disease diagnosis and remedy recommender system that 

conquers all of the aforementioned challenges. The key contributions of this thesis have 

been summarized in the subsequent section. 

1.1. Key Contributions 
The major contributions of this thesis are listed below: 

1. Two lightweight plant disease detection models have been proposed in the thesis 

for identifying a plant disease from leaf images. 

a. The first model named PlantGhostNet utilizes Ghost and Squeeze-and-

Excitation modules for detecting single type of plant disease. The Ghost 

Module is used for trainable weight parameter reduction, and the 

Squeeze-and-Excitation Module is utilized for performance 

improvement. 

b. In the second work the Convolutional Auto Encoder (CAE) and 

Convolutional Neural Network (CNN) have been combined to build a 

lightweight hybrid model. In this model, the CAE has been utilized to 

reduce the trainable weight parameters further. 

The aforementioned models can identify a plant disease very efficiently and 

effectively. However, these models cannot diagnose multiple plant diseases 

with high accuracy. Therefore, in the subsequent work, the TrIncNet model has 

been proposed to deal with this issue. 

2. A lightweight and improved Vision Transformer (ViT) network named Trans-

Inception Network (TrIncNet) model has been proposed next in this thesis to 

identify multiple plant diseases from leaf images. This model comprises of 

multiple linearly concatenated Trans-Inception blocks. Each of these Trans-

Inception blocks consists of Inception Module in place of Multi Layer 

Perceptron (MLP) Module. This replacement results in lesser number of 

trainable weight parameters. Moreover, skip connection around each Trans-

Inception block has also been added in the proposed TrIncNet model to make it 
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more resistant to the vanishing gradient problem. Though the TrIncNet model 

can effectively and efficiently detect multiple plant diseases from leaf images, 

but estimation of disease severity is also crucial for taking timely action for 

curing the identified disease. Hence, in the next work, PDSE-Lite framework 

has been developed to handle this problem. 

3. A lightweight PDSE-Lite framework has been proposed in the thesis to estimate 

plant disease severity. This framework has been designed and developed by 

using CAE and FSL. Since the PDSE-Lite framework utilizes FSL, it requires 

only few annotated leaf images for training. Hence, in this way, the PDSE-Lite 

framework reduces the dependence on large scale manually annotated datasets, 

and thereby minimizing the human efforts required to create such datasets. 

Although this framework can effectively and efficiently estimate plant disease 

severity, but a recommender system is needed to assist farmers by providing 

bilingual advisory to cure the identified plant disease. Hence, a recommender 

system named PlantD2R2S-Lite has been designed and developed next in the 

thesis to deal with this drawback. 

4. A recommender system named PlantD2R2S-Lite has been designed for providing 

various preventive and management practices to mitigate the effects of different 

diseases on plants. This framework has been developed as an Android mobile 

application that can identify plant diseases and estimate their severity with the 

help of leaf images. This application also generates advisories for the farmers 

to cure the identified plant disease via pre-trained Bidirectional Encoder 

Representations from Transformer (BERT) model. The PlantD2R2S-Lite 

application works in both English and Hindi language to help non English 

speaking farmers. 

The following section describes the chapter-wise organization of this thesis. 

1.2. Organization of the Thesis 
This thesis comprises of seven chapters, and each of these chapters has been 

summarized as follows: 



Lightweight and Few-Shot Image-Based Plant Disease Diagnosis and Remedy Recommender 
System 

4 

 Chapter 1 presents the significance of automatic plant disease detection and 

severity estimation for the growth of agricultural sector. Furthermore, it 

identifies several prominent research challenges in developing an effective and 

efficient recommender system for automatic plant disease diagnosis and 

providing advisory to cure the identified disease. This chapter also lists the key 

contributions of this research work along with the list of various journal and 

conference publications that are produced as the outcomes of this thesis. 

 Chapter 2 discusses the problem of image-based plant disease detection and 

severity estimation. It also describes various DL architectures, namely Deep 

Neural Network (DNN), CNN, CAE, and Vision Transformer (ViT). These DL 

architectures are used in subsequent chapters of this thesis. This chapter also 

describes various Few-Shot Learning (FSL) techniques based on distance 

metric learning, hallucination, and initialization. These techniques are utilized 

in chapter 5 of the thesis for designing the PDSE-Lite framework. 

 Chapter 3 evaluates the performances of various predefined CNN architectures 

in detecting single type of plant diseases from leaf images. This chapter also 

proposes the PlantGhostNet model and a lightweight hybrid model for 

identifying a plant disease from leaf images. PlantGhostNet model is designed 

by combining Ghost and Squeeze-and-Excitation modules which reduces the 

trainable weight parameters and enhances the model’s performance, 

respectively. On the other hand, the lightweight hybrid model is based on CAE 

and CNN. This model first obtains the compressed domain representations of 

leaf images using the encoder network of CAE and then uses these compressed 

domain representations for classification via CNN. Due to the reduction of 

spatial dimensions using CAE, the number of features and, hence, the number 

of trainable weight parameters of the lightweight hybrid model reduced 

significantly as compared to the PlantGhostNet model and existing state-of-the-

art models. 

 Chapter 4 presents a lightweight and improved ViT network named Trans-

Inception Network (TrIncNet) for identifying multiple plant diseases from leaf 

images. The TrIncNet model encompasses of multiple modified encoder blocks, 

i.e., Trans-Inception blocks. Each Trans-Inception block comprises of Inception 
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Module in place of MLP Module for extracting various temporal and spatial 

features from leaf images. As a result of this replacement, the Trans-Inception 

block requires significantly lesser number of trainable weight parameters than 

the original encoder of ViT. Additionally, skip connections are added between 

each Trans-Inception block to make the proposed network more resistant 

towards the vanishing gradient problem. In this way, the TrIncNet model can 

effectively and efficiently identify multiple plant diseases from leaf images as 

compared to other counterparts. 

 Chapter 5 proposes a lightweight Plant Disease Severity Estimation (PDSE-

Lite) framework to estimate the severity of identified diseases effectively and 

efficiently. This framework is designed and developed by utilizing CAE and 

FSL. As this framework is based on FSL, it requires only few annotated leaf 

images for training. In this way, the PDSE-Lite framework reduces the reliance 

on large scale manually annotated datasets, and thereby minimizing the human 

efforts required to create such datasets. 

 Chapter 6 presents a novel PlantD2R2S-Lite framework for generating 

bilingual advisory to cure plant diseases. The PlantD2R2S-Lite utilizes the 

PDSE-Lite framework for plant disease detection and severity estimation 

through digital leaf images of plants. Thereafter, it generates the advisory for 

the farmers to remediate the identified disease with the help of pretrained BERT 

model. This framework has been developed as an Android mobile application 

that can be used in either English or Hindi language. The models for plant 

disease diagnosis and remedy recommendation have been embedded into the 

application. Therefore, it can work even in remote locations where Internet 

connectivity may not be strong. 

 Chapter 7 summarizes all contributions of this research work and concludes 

the thesis. Moreover, it discusses several limitations of the research work 

presented in the thesis, along with directions for future research. 

1.3. List of Publications 
This section presents my co-authored papers that were published or communicated 

during my Ph.D. tenure. 
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2. Background Concepts 

This chapter briefly describes the problem of image-based plant disease detection and 

severity estimation. Further, this chapter explains the basic concepts of different DL 

and FSL techniques used in later chapters of this thesis. At the end this chapter 

concludes with a summary. 

2.1 Image-based Plant Disease Detection and Severity 
Estimation 

Disease infestation in the growing stages of crops can adversely affect their quality and 

quantity, which will later adversely affect the food supply chain. Diagnosing plant 

diseases at their earliest possible stages can be a viable strategy to conquer this, as it 

has the potential to minimize crop loss and maximize the profit of farmers. 

Traditionally, farmers and agricultural scientists diagnose plant diseases by manually 

examining the plant leaves for the occurrence of disease lesions. Then, they utilize their 

domain knowledge for disease severity estimation. This process of identifying plant 

diseases and estimating the severity of identified diseases is laborious and time-

consuming, as it requires human intervention. Nowadays, plant disease diagnosis and 

severity estimation are performed by applying Image processing, ML, or DL algorithms 

on digital leaf images of plants. Subsequent sections of this chapter explain the basic 

concepts of different DL and FSL techniques that are utilized in this thesis. 

2.2 Deep Learning Architectures 
DL is a subfield of Artificial Intelligence inspired by the functioning of the human 

brain. The prominent advantage of DL techniques over ML techniques is that these 

techniques can automatically extract various features from raw data. Hence, there is no 

need for an extra feature extraction module. This section is further divided into four 

subsections in which various DL architectures, namely Deep Neural Network (DNN), 

Convolutional Neural Network (CNN), Convolutional Auto Encoder (CAE), and 

Vision Transformer (ViT), are explained. 
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2.2.1 Deep Neural Network (DNN) 

DNN is a classical fully connected neural network in which neurons of adjacent layers 

are interconnected to each other. Each layer of this network has several neurons (also 

known as nodes) that utilize a non-linear activation function (like Sigmoid, TanH, 

ReLU, etc) for extracting various complex hidden features present in the input data. 

The first and last layers of DNN are known as input and output layers, respectively. 

The intermediate layers between the input and output layers are known as hidden layers. 

A six-layer DNN has been shown in Figure 2.1. 

 

Figure 2.1: Block diagram of a six-layer DNN 

In Figure 2.1, the circles represent neurons of the DNN, and edges connecting the 

neurons carry the weights, which are adjusted during the training process. Therefore, 

these weights are known as trainable weight parameters. In DNN, if 𝑖௧௛ layer has 𝑁௜ 

neurons and (𝑖 + 1)௧௛ layer comprises of 𝑁௜ାଵ neurons, then the number of trainable 

weight parameters between 𝑖௧௛ and (𝑖 + 1)௧௛ layer would be 𝑁௜ × 𝑁௜ାଵ + 𝑁௜ାଵ. 

Furthermore, the total number of trainable weight parameters of a DNN can be obtained 

by summing up the trainable weight parameters of all the layers present in the DNN. 

The major drawback of DNN is that all adjacent layers of this network are fully 

connected to each other. Therefore, it requires large number of trainable weight 

parameters, which makes the DNN model computationally heavy. Moreover, this 

model cannot extract different spatial and temporal features from images efficiently, 

which can later enhance the performance of model in image classification. These 
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drawbacks of the DNN model have been conquered by the CNN model, which is 

described in the following subsection. 

2.2.2 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a type of DL architecture inspired by the 

human visual system. This network employs convolution operation instead of simple 

matrix multiplication in at least one of its layers (Lecun, 1989). Due to its excellent 

capability in extracting various spatial and temporal features from image data, it is 

widely used in different image processing tasks like image classification, image 

segmentation, object detection, etc. As this thesis focuses on plant disease detection and 

severity estimation using leaf images, CNN has been utilized in the research work. 

Hence, in order to describe CNN, its different building blocks are explained next in this 

section, and the block diagram of a typical CNN is given in Figure 2.2. 

 

Figure 2.2: Block diagram of a typical CNN 

A. Convolutional Layer 

The convolutional layer of CNN performs the convolution operation on input images 

to extract different spatial and temporal features. A typical CNN can have more than 

one convolutional layer. The initial convolutional layer captures low-level features like 

edges, the orientation of gradients, color, etc. Convolutional layers that are placed at 

the end of a CNN extract high-level features that help the network to understand the 

input images. These extracted features are utilized in various computer vision tasks like 

image classification, image segmentation, object detection, etc. Mathematically, the 

convolution operation can be defined on two real-valued functions, say 𝑎 and 𝑏. Its 
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output is also a function, say 𝑐, which expresses the effect of function 𝑎 on 𝑏. The 

mathematical formula for convolution operation in continuous and discrete domain is 

given in equation 2.1 and equation 2.2, respectively. 

𝑐(𝑥) = (𝑎 ∗ 𝑏)(𝑥) =  න 𝑎(𝑥) ⋅ 𝑏(𝑥 − 𝑘) ⋅ 𝑑𝑘

ஶ

ିஶ

 (2.1) 

𝑐(𝑥) = (𝑎 ∗ 𝑏)(𝑥) = ෍ 𝑎(𝑥) ⋅ 𝑏(𝑥 − 𝑘)

ஶ

௞ୀିஶ

 (2.2)  

In CNN, 𝑎(𝑥), 𝑏(𝑥), and 𝑐(𝑥) are termed as input feature map, filter/kernel, and output 

feature map, respectively. The visualization of the convolution operation has been given 

in Figure 2.3. In the convolutional layer, multiple filters can be utilized, and these filters 

move row-wise along the image to get the output feature maps. The number of output 

feature maps is equal to the number of filters utilized in the convolutional layer. 

 

Figure 2.3: Visualization of convolution operation 

It can be observed from the above figure that unlike DNN, the adjacent convolutional 

layers of CNN are not fully connected to each other. Instead of, they are connected by 

single or multiple kernel(s)/filter(s), which carry the weight parameters and move along 

the input feature map to extract different spatial and temporal features from input 

images. Hence, the number of edges connecting two adjacent convolutional layers of 
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CNN are significantly lesser than the edges present in DNN. Since the number of 

trainable weight parameters are based on the number of edges and hence the number of 

trainable weight parameters in convolutional layers are significantly lesser than the 

layers of DNN. If the dimension of the input feature map is 𝐼௔ × 𝐼௔ × 𝐼௖ (where 𝐼௔ is 

the height and width of the input feature map and 𝐼௖ represents the number of channels 

present in 𝐼), and there are 𝑛 convolutional filters of size 𝐼௕ × 𝐼௕ are applied, then the 

number of trainable weight parameters used in this convolutional layer are 

𝐼௖ × 𝐼௕ × 𝐼௕ × 𝑛 + 𝑛.  

It can be observed from the definition of convolution operation that if the size of the 

input matrix is 𝐼௔ × 𝐼௔ and the size of the filter is 𝐼௕ × 𝐼௕ (where 𝐼௕ ≤ 𝐼௔), then the size 

of the output feature map is (𝐼௔ − 𝐼௕ + 1) × (𝐼௔ − 𝐼௕ + 1). Hence, after each 

convolution operation, size of the output feature map is decreased, or in other words, 

the size of the input feature map reduces after each convolution operation and becomes 

zero after some convolutions. Thereby, it limits the CNN’s depth by placing an upper 

bound on the number of convolutional layers present in a CNN. Furthermore, the 

elements present on the edges and corners are utilized less than the elements present in 

the center of the input matrix. In order to deal with these two issues, padding is used in 

the convolutional layers. 

Padding is the process of appending zeroes to the borders of the input matrix. This 

increases the area of the input matrix on which the convolution operation has to be 

performed, and it ensures that the spatial dimensions of the input image do not reduce 

after performing a convolution operation. Moreover, performing padding multiple 

times ensures that the elements present on the edges and corners are utilized equally as 

of the elements present in the center of the input matrix. Figure 2.4 depicts padding on 

a 5 × 5 input matrix. Let us suppose 𝑝 layers of zeroes are appended in an input matrix 

of size 𝑚 × 𝑚. Further, this matrix is convolved with a kernel of size 𝑘 × 𝑘. Then, the 

value of 𝑝 for keeping the dimension of the input matrix same after the convolution 

operation can be calculated by equation 2.3. 

𝑚 + 2𝑝 − 𝑘 + 1 = 𝑚 ⟹ 𝑝 =
𝑘 − 1

2
 (2.3) 
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Figure 2.4: Padding operation on an input matrix of size 𝟓 × 𝟓 

From equations 2.1 and 2.2, it can be observed that convolution is a linear operation. 

Thus, in order to extract the non-linear features from images, different non-linear 

activation functions, such as Sigmoid, Hyperbolic Tangent (TanH), ReLU, etc., are 

employed in convolutional layers. 

B. Pooling Layer 

Pooling layer is also an integral part of CNN, and it is employed in CNN for reducing 

the dimensions of the input feature map by selecting one value within a neighborhood 

based on different statistics. Some widely utilized statistics are average, 𝐿ଶ-norm, 

weighted average, and max-pooling. Max-pooling and average-pooling pick the 

maximum value and average value from its neighborhood, respectively. The pictorial 

representation of max-pooling and average-pooling is shown in Figure 2.5. 

It can be seen from Figure 2.5 that the pooling layer can reduce the dimensions of the 

input feature map. Consequently, it reduces the number of trainable weight parameters, 

which results in less training and inference time. 

C. Fully Connected Layer (Dense Layer) 

The fully connected layer is a layer of DNN (also known as the dense layer), which 

comprises of multiple neurons with an activation function. A typical CNN encompasses 

of a set of fully connected layers, which utilizes the features extracted from previous 

convolutional and pooling layers for classifying the input image into their respective 

classes. The input to fully connected layers must be a one-dimensional vector, and the 
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output (feature maps) obtained from previous convolutional and pooling layers is in the 

form of multidimensional arrays, also known as tensors. Therefore, these output feature 

maps are flattened to one-dimensional vector. The last fully connected layer of a CNN 

acts as an output layer, which comprises of as many neurons as the number of classes 

available in the dataset. This layer gives the probability of belongingness of the input 

image to different classes available in the dataset. Next section of this chapter describes 

the CAE model. 

 

Figure 2.5: Max-pooling and Average pooling operations within 𝟐 × 𝟐 neighborhood 
 

2.2.3 Convolutional Auto Encoder (CAE) 

Convolutional Auto Encoder (CAE) is a type of Auto Encoder that utilizes a network 

of convolutional and pooling layers to encode the input images into some lower-

dimensional space or compressed domain space. In order to do this, a bottleneck is 

introduced in the network, which compels the network to learn the compressed domain 

representation of the input images. The block diagram of a typical CAE having 𝑁 layers 

is shown in Figure 2.6. 

The CAE comprises of four components: Encoder Network, Bottleneck Layer, Decoder 

Network, and Reconstruction Loss. Encoder Network consists of a set of convolutional 

and downsampling layers (max-pooling layers). These layers extract various spatial and 
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temporal features from image data and then encode the extracted features into 

compressed domain representation. This compressed domain representation is stored in 

the Bottleneck Layer of CAE, and it encompasses of all essential features of images, 

which are further required by the Decoder network to reconstruct the images. 

 

Figure 2.6: Block diagram of a typical CAE 

Decoder Network of CAE consists of same number of layers as the Encoder Network 

but in reverse order. Moreover, in Decoder Network, upsampling layers are utilized 

instead of downsampling layers. The Decoder Network tries to reconstruct input images 

with minimum reconstruction loss. The reconstruction loss is a function that evaluates 

the difference between the original input images (say 𝐼ை) and reconstructed images (say 

𝐼ோ). In literature, majorly the Mean Squared Error (MSE) function is utilized to measure 
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the reconstruction loss. The mathematical formula for MSE is given in equation 2.4, 

where 𝑁ூ denotes the number of images taken into consideration. 

𝑀𝑆𝐸(𝐼ை , 𝐼ோ) =
1

𝑁ூ
෍(𝐼௝

ை − 𝐼௝
ோ)

ே಺

௝ୀଵ

 (2.4) 

In literature, there are different types of Auto Encoders, such as Stacked Auto Encoder, 

Denoising Auto Encoder, etc. However, the work presented in this thesis deals with 

plant leaf images. Therefore, CAE has been used in this research work. In the next 

section of this chapter, the ViT model has been described. 

2.2.4 Vision Transformer (ViT) 

The Vision Transformer (ViT) model is a Transformer (Vaswani, et al., 2017) based 

DL model designed and developed by (Dosovitskiy, et al., 2021) to perform various 

computer vision tasks such as image classification, image segmentation, etc. The block 

diagram of a typical ViT model is shown in Figure 2.7. 

 

Figure 2.7: Block diagram of a typical ViT Model 
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In the ViT model, the input images of size 𝑀 × 𝑀 × 𝐶, are first divided into small 

patches of size 𝑝 × 𝑝 × 𝐶. Here, 𝑀 denotes the height and width of input images, and 

𝑝 represents the height and width of patches. Moreover, 𝐶 is the number of channels 

present in the input images. After splitting the input images into small patches, these 

patches are flattened and then transformed by a linear embedding, 𝐸: ℝ௣×௣×஼ → ℝௗ , 

also known as patch embedding. Here, 𝑑 represents the embedding dimension of the 

ViT model. On the other hand, the positional embedding of the patches are computed 

by finding the index of a patch in row-major order. After that, the patch embedding and 

positional embedding of the patches are added together to form the input for the first 

encoder block of the ViT model. The ViT model comprises of multiple stacked encoder 

blocks, and each encoder block encompasses of three modules: Layer Normalization, 

Multi-Head Attention (MHA), and Multi Layer Perceptron (MLP). These modules are 

described in the following subsections, and the architectural diagram of the ViT 

model’s encoder block is shown in Figure 2.8. 

 

Figure 2.8: Architectural diagram of ViT model’s encoder block 

A. Layer Normalization Module 

Layer Normalization has been proposed by (Ba, Kiros, & Hinton, 2016) to conquer the 

drawbacks of Batch Normalization, as its dependency on batch statistics can lead to 

instability with small batch sizes. On the other hand, Layer Normalization normalizes 

the activations in the feature direction instead of the batch direction. Therefore, it 
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overcomes the aforementioned shortcoming of Batch Normalization by removing the 

dependence on batches. Moreover, it normalizes every feature of the activations to unit 

variance and zero mean. In the Layer Normalization paradigm, first, means and 

variances are calculated for each channel of the feature map through equations 2.5 and 

2.6, respectively. Second, the normalized feature maps are computed by equation 2.7, 

and at last, scaling and shifting are done with the help of two learnable parameters, i.e., 

𝛾 and 𝛽, by equation 2.8. 

𝜇௜,௖ =
1

𝐻𝑊
෍ ෍ 𝑥௜௛௪௖

ௐ

௪ୀଵ

ு

௛ୀଵ

 (2.5) 

𝜎௜,௖
ଶ =  ෍ ෍൫𝑥௜௛௪௖ − 𝜇௜,௖൯

ଶ
ௐ

௪ୀଵ

ு

௛ୀଵ

 (2.6) 

𝑥௜,௛௪௖
௡௢௥௠ =  

𝑥௜௛௪௖ − 𝜇௜,௖

ට𝜎௜,௖
ଶ + 𝜖

 
(2.7) 

𝑦௜ = 𝛾 𝑥௜
௡௢௥௠ + 𝛽 ≡ 𝐿𝑁ఊ,ఉ(𝑥௜) (2.8) 

where 𝑚 is the number of the feature maps, 1 ≤ 𝑖 ≤ 𝑚, 𝐻, 𝑊, and C are the height, 

weight, and channels of the feature map, respectively, and 1 ≤ 𝑐 ≤ 𝐶. In the ViT 

model, the Layer Normalization module normalizes the feature map received from its 

previous layer to improve the model’s stability and performance. 

B. Multi-Head Attention (MHA) Module 

In the Multi-Head Attention (MHA) module, 𝑚 self-attention operations are performed 

parallelly, where 𝑚 is a hyperparameter representing the number of heads used in this 

module. The self-attention operation is inspired by the operation of a human eye that 

focuses only on the part of information while ignoring other things (Bahdanau, Cho, & 

Bengio, 2015). The aim of this operation is to gather the relationships among all entities. 

These entities can be words of a sentence in the Natural Language Processing (NLP) 

domain, while in the computer vision domain, these entities are the patches of an image. 

Let there be 𝑘 such entities, i.e., (𝑒ଵ, 𝑒ଶ, 𝑒ଷ, … , 𝑒௞) represented by 𝐸 ∈ ℝ௞×ௗ, where 𝑑 
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is the embedding dimension in which the information of each entity has been 

embedded. In self-attention operation, three learnable weight matrices: Query (𝑊ொ ∈

ℝௗ×ௗ೜), Key (𝑊௄ ∈ ℝௗ×ௗೖ), and Value (𝑊௏ ∈ ℝௗ×ௗೡ) are trained using the 

backpropagation algorithm, where 𝑑௤ , 𝑑௞, and 𝑑௩ are the number of columns present in 

Query, Key, and Value weight matrices. In self-attention operation, first, the input 

sequence 𝐸 is multiplied with these learnable matrices to get 𝑄 = 𝐸𝑊ொ, 𝐾 = 𝐸𝑊௄, and 

𝑉 = 𝐸𝑊௏ matrices. After obtaining the 𝑄, 𝐾, and 𝑉 matrices, the self-attention score 

(𝑍) matrix is calculated by equation 2.9 (Vaswani, et al., 2017). 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾௧

√𝑑௞

ቇ ⋅ 𝑉 (2.9) 

The outputs of all 𝑚 heads are concatenated together and then multiplied by an output 

weight matrix (𝑊ை ∈ ℝ௞×௠ௗೡ ) according to equation 2.10, where 𝑍௜ is the self-

attention score matrix of 𝑖௧௛ head. 

𝑍௠௨௟௧௜௛௘௔ௗ = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑍ଵ, 𝑍ଶ, … , 𝑍௜ , … , 𝑍௠)௧𝑊ை (2.10) 

In the ViT model, the MHA module captures global dependencies between image 

patches by simultaneously performing multiple self-attention operations. 

C. Multi Layer Perceptron (MLP) Module 

The Multi Layer Perceptron (MLP) module present in the encoder block of the ViT 

model consists of two fully connected (dense) layers. The first and second layers of the 

MLP module have 2𝑑 and 𝑑 number of neurons, respectively. Moreover, these layers 

employ Gaussian Error Linear Units (GELU) non-linear activation function to extract 

various non-linear features from image patches. The approximated GELU activation 

function (𝜎ீா௅௎) and mathematical representation of the MLP module is given in 

equations 2.11 and 2.12, respectively. 

𝜎ீா௅௎(𝑥) =
𝑥

2
⋅ ቎1 + 𝑡𝑎𝑛ℎ ቐඨ

2

𝜋
⋅ (𝑥 + 0.044715𝑥ଷ)ቑ቏ (2.11) 
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MLP(𝑋) = 𝜎ீா௅௎(𝑊ଶ
்(𝜎ீா௅௎(𝑊ଵ

்𝑋 + 𝑏ଵ) + 𝑏ଶ)  (2.12) 

where 𝑋 is the 𝑑-dimensional input vector, 𝑊ଵ, 𝑏ଵ and 𝑊ଶ, 𝑏ଶ are the weights and biases 

of the first and second layers of the MLP module, respectively. In the ViT model, the 

MLP module extracts intricate correlations between the image patches, which further 

help the model to correctly classify the input images into their corresponding classes. 

The work presented in this thesis also utilizes concepts of Few-Shot Learning (FSL), 

which is described in the next section. 

2.3 Few-Shot Learning (FSL) 
Any ML or DL model necessitates a large number of annotated instances during 

training for better generalization. However, the human brain can learn anything 

effectively by utilizing only few samples (Weng Lilian, 2018). For example, a person 

who knows how to ride a bicycle can quickly learn to ride a motorcycle with few or 

even no demonstration. Therefore, researchers tried to explore various learning 

algorithms that have similar learning properties as those of the human brain. In this 

context, FSL based models give good results and emerged as possible solutions for the 

aforementioned problem (Song, Wang, Cai, Mondal, & Sahoo, 2023; Wang, Yao, 

Kwok, & Ni, 2020). These techniques significantly reduce the reliance on large-

annotated datasets, which are utilized to train different ML or DL models. Moreover, 

data annotation is a time-consuming and laborious task; therefore, FSL based models 

significantly reduce the human effort required to annotate the dataset. In this thesis, 

FSL is employed for image classification and segmentation; thus, the mathematical 

formulation of FSL is defined based on image data. 

In order to formulate the FSL problem mathematically, let us consider an image dataset 

𝐷 = {(𝑥௜, 𝑦௜)}௜ୀଵ
ே , where 𝑥௜ and 𝑦௜ denotes the 𝑖௧௛ image and its corresponding label, 

respectively. Additionally, the dataset 𝐷 comprises of 𝐶 number of classes. In the 

context of FSL, the number of instances in the dataset, i.e., 𝑁 should be significantly 

lesser as compared to traditional ML or DL techniques. 

In FSL, the entire dataset 𝐷 is divided into two non-overlapping subsets named 

“Support set” and “Query set.” The Support set (denoted by 𝑆)  is used to train a FSL-



Lightweight and Few-Shot Image-Based Plant Disease Diagnosis and Remedy Recommender 
System 

22 

based model, and it comprises of 𝑘 instances from each class of the dataset. The 

mathematical representation of the Support set is given in equation 2.13, where 𝑥௦೔
 and 

𝑦௦೔
 denotes the 𝑖௧௛ image and its corresponding label in the Support set, respectively. In 

literature, if there are 𝑘 instances of 𝐶 classes present in the Query set 𝑄, then it is 

widely known as 𝐶-way-𝑘-shot FSL problem. If 𝑘 = 0  then it is termed as “Zero-Shot-

Learning” and if 𝑘 = 1, then it is called as “One-Shot-Learning.” 

𝑆: ቂ൛൫𝑥௦೔
, 𝑦௦೔

൯ൟ
௜ୀଵ

௞
ቃ

௖ୀଵ

஼

 (2.13) 

On the other hand, the Query set (denoted by 𝑄) is used to evaluate the performance of 

the FSL-based model, and its mathematical representation is shown in equation 2.14. 

The objective of FSL is to learn a mapping function 𝑓∗ by using the Support set, which 

minimizes the loss function 𝐿 over the Query set 𝑄. This objective of FSL in terms of 

Support and Query set is mathematically shown in equation 2.15, where 𝑓(𝑥௤೔
; 𝑆) 

represents the prediction made by the function 𝑓 for the 𝑖௧௛ image present in Query set 

𝑄 based on the support set 𝑆. Furthermore, 𝑓∗ is the optimal function, which has the 

minimum value for loss function 𝐿. 

𝑄: 𝐷 − 𝑆 =  ൛൫𝑥௤೔
, 𝑦௤೔

൯ൟ
௜ୀଵ

௠
  (2.14) 

𝑓∗ = arg min
௙

1

𝑚
෍ 𝐿൫𝑓൫𝑥௤೔

; 𝑆൯, 𝑦௤೔
൯

௠

௜ୀଵ

 (2.15) 

In literature, the FSL techniques are broadly categorized into three categories, namely, 

Techniques based on distance metric learning, Techniques based on Hallucination, and 

Techniques based on Initialization (Chen, Liu, Kira, Wang, & Huang, 2019). These 

categories are described in subsequent subsections. 

2.3.1 Techniques based on Distance Metric Learning 

This set of techniques tries to conquer the FSL problem by learning to compare any two 

instances of the dataset. Intuitively, if a model can effectively differentiate two images 

belonging to different classes of the dataset, then it can learn to identify the classes of 
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unseen images by utilizing only limited data. Hence, these techniques reduce the 

reliance on large datasets by learning the similarities between images instead of 

learning various image features for classification. In literature, three distance metric 

learning based techniques are widely used, namely, Siamese Network, Triplet Network, 

and Prototypical Network. These techniques are described below: 

A. Siamese Network 

Siamese Network was initially introduced by Bromley et al. (Bromley, Guyon, LeCun, 

Säckinger, & Shah, 1994) for signature verification. It comprises of two identical neural 

networks (CNNs in the case of image data) that share the same weights and other 

hyperparameters. These neural networks are trained to represent the input images into 

a feature vector such that images belonging to the same class have similar feature 

vectors and images corresponding to different classes have dissimilar feature vectors. 

This goal is achieved by training these neural networks using contrastive loss function 

(Hadsell, Chopra, & LeCun, 2006). 

Each of these neural networks takes an image as input and provides the feature vector 

of the input image as output. After that, the feature vectors provided by both neural 

networks are fed into a distance function (say Euclidean distance function) to measure 

the similarity between them. The similarity between two vectors is inversely 

proportional to the distance between them. Thereby, images belonging to the same class 

have a smaller distance between their feature vectors, whereas images corresponding 

to different classes have a larger distance between their feature vectors. As both neural 

networks share the same weight and other hyperparameter, thus the output of the 

Siamese Network remains unaffected by interchanging the input to the neural networks. 

B. Triplet Network 

These networks try to learn the similarities and dissimilarities simultaneously between 

the dataset’s images. This FSL model utilizes three images as input (thereby known as 

a triplet network) referred by anchor, positive, and negative. Anchor represents the 

image that needs to be classified, and positive denotes the image belonging to the same 

class as the anchor. On the other hand, the negative indicates the image that does not 

correspond to the anchor’s class. 
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In the context of images, CNNs are utilized to extract various spatial and temporal 

features and represent these extracted features as image embedding. The objective of 

triplet networks is to learn a representation of inputs such that the distance between the 

embedding of anchor and positive images is minimized, and the distance between the 

anchor image’s embedding and the embedding of negative image is maximized. In 

order to achieve this, triplet networks employ the triplet loss function (Schroff, 

Kalenichenko, & Philbin, 2015), which is mathematically represented in equation 2.16. 

Here, in this equation, 𝐼஺, 𝐼௉, and 𝐼ே denotes the anchor, positive, and negative images, 

respectively. Additionally, 𝐸 represents image embedding function, and 𝛿 denotes the 

margin enforced between negative and positive pairs of images. The distance between 

any pair of images 𝑎 and 𝑏 is computed using Euclidean distance formula, i.e., 

‖𝑎 − 𝑏‖ଶ. 

𝐿௧௡(𝐼஺, 𝐼௉, 𝐼ே) = max(‖𝐸(𝐼஺) − 𝐸(𝐼௉)‖ଶ − ‖𝐸(𝐼஺) − 𝐸(𝐼ே)‖ଶ + 𝛿, 0) (2.16) 

After completion of the training process, the triplet network acts as a feature extractor. 

In order to perform image classification, it is usually integrated with the k-Nearest 

Neighbor (KNN) classifier. 

C. Prototypical Network 

The key objective of the prototypical network is to compute a prototype for each class 

present in the support set and compare it with the embedding of images present in the 

query set (Snell, Swersky, & Zemel, 2017). The mathematical formula to calculate the 

prototype is given in equation 2.17, where 𝑃௖ is the prototype of class 𝑐, 𝑘 is the number 

of images present in the Support set for each class. Additionally, 𝐸(𝑥௜
௖) is the 

embedding of 𝑖௧௛ image belonging to 𝑐௧௛ class. 

𝑃௖ =
1

𝑘
෍ 𝐸(𝑥௜)

௞

௜ୀଵ

 (2.17) 

After prototype computation, the sample image from the Query set, i.e.,  𝑥௤, is 

compared with the prototypes of classes via Euclidean distance function. In contrast to 

triplet networks, prototypical networks can perform image classification (as per 
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equation 2.18) without utilizing another classifier like KNN. In equation 2.18, 𝑦 is the 

label of the query image, 𝐶 is the number of classes present in the dataset, and 𝑃௜ is the 

prototype of 𝑖௧௛ class.  

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦൫𝑦 = 𝑐|𝑥௤൯ =
exp ቀฮ𝐸൫𝑥௤൯ − 𝑃௖ฮ

ଶ
ቁ

∑ exp ቀฮ𝐸൫𝑥௤൯ − 𝑃௜ฮ
ଶ

ቁ∀௜∈஼

 (2.18) 

Though distance metric learning based methods can effectively deal with the FSL 

problem, but they have several drawbacks that can adversely affect their performance. 

Prototypical Network requires sufficiently large Support set for each class during model 

training, which contradicts the problem of FSL. Triplet Networks, which involve 

training with triplets (i.e., anchor, positive, negative images), can be computationally 

expensive. Additionally, the need to carefully select useful triplets and increased 

training complexity can make the Triplet Network more resource-intensive. The major 

drawback of Siamese Networks is their reliance on a fixed-size embedding space. The 

fixed-size representation may limit the network's ability to effectively capture the 

complexity of diverse and high-dimensional input data, potentially leading to low 

performance in tasks with intricate class structures or varying feature representations. 

2.3.2 Techniques based on Hallucination 

These techniques employ various data generation methods in order to generate artificial 

data. This artificially generated data is then combined with existing training data (few 

training instances) to improve the model’s ability to classify unseen images. The 

artificially generated instances are commonly known as hallucinated instances. In 

literature, various data generation methods are widely utilized. Some of these methods 

are discussed below: 

A. Interpolation based Data Generation 

Interpolation is a mathematical technique through which new data points are generated 

between two existing data points. There are various interpolation techniques available 

in the literature, namely, linear interpolation, bilinear interpolation, geometric 

interpolation, spherical linear interpolation, etc. Interpolation can be done in the input 
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space or feature space both. By leveraging interpolation, synthetic data can be 

generated, which conquers the challenge of limited labeled data in the FSL problem. 

However, the effectiveness of this approach depends on the effectiveness of the 

interpolation technique. 

B. Digital Image Processing based Data Augmentation 

It is a technique that artificially enlarges the dataset of images with the help of different 

Digital Image Processing techniques such as image rotation, zoom in, zoom out, image 

flipping, etc. (Bedi, Gole, & Agarwal, 2021). These transformations simulate different 

viewpoints, lighting conditions, and deformations that the model might encounter in 

real-world scenarios. In the context of FSL, data augmentation can be a viable solution 

as it has the potential to artificially enlarge the dataset even if a limited number of 

images are available.  

C. Deep Learning based Data Generation 

The aforementioned data augmentation technique solely relies on various predefined 

Digital Image Processing techniques. However, nowadays, researchers are widely 

utilizing DL based generative models like Generative Adversarial Networks (GANs) or 

Variational Auto Encoders (VAEs) for generating much more realistic images as 

compared to previous data augmentation techniques.  

GANs employ two neural networks (CNNs in case of image data) named Generator and 

Discriminator for image generation. The Generator and Discriminator models are 

trained in an adversarial fashion, i.e., the Discriminator is trained in such a way that it 

can differentiate between original and generated images. On the other hand, the 

objective of the Generator is to generate very realistic images so that the Discriminator 

cannot distinguish between generated and original images. At the end of training, the 

Generator can effectively generate very realistic images. On the other hand, VAEs 

generate images by utilizing their encoder-decoder architecture. Initially, VAE utilizes 

its encoder and decoder both to learn the compressed domain representation (latent 

space) of input images. After that, it randomly selects a vector in latent space and then 

feeds this randomly selected vector to its decoder for image generation.  
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Hallucination-based methods offer the advantage of generating artificial data when only 

limited training data is available. However, certain drawbacks are also associated with 

these techniques. The first drawback is that there is a high risk of model overfitting due 

to the artificially generated instances or hallucinated instances, especially if the 

hallucinated instances do not represent the true distribution of original data. 

Furthermore, if the original data is biased, then hallucination based techniques may 

amplify the bias through generated instances, which leads to biased predictions. In 

addition to this, generative models like GANs and VAEs are computationally 

expensive, which limits the scalability and practicality of these methods. 

2.3.3 Techniques based on Initialization 

These techniques primarily focus on providing a good starting point for model training. 

As a result, the model can learn new tasks effectively with limited training data. In this 

context, two widely utilized approaches are, namely, the Meta Learning-based 

approach and the Transfer Learning based approach. First approach aims to learn good 

optimizer, and the second approach focuses on learning good weight parameters. These 

two approaches are described in the following subsections. 

A. Meta-Learning based Approach 

DL models utilize various optimization algorithms (commonly known as optimizers) 

to adjust their weight parameters by computing the gradient of loss function with 

respect to weights (Goodfellow, Bengio, & Courville, 2016). However, these gradient-

based optimization algorithms, like Stochastic Gradient Descent (SGD), Adaptive 

Gradient (AdaGrad), etc., are not designed in such a way that they can deal with the 

limited amount of data. Therefore, various researchers modified the algorithms of 

existing optimizers so that the aforementioned problem could be solved. These 

modified algorithms are widely known as Meta-Learning algorithms, and they majorly 

focus on learning to learn. In literature, some commonly employed Meta-Learning 

algorithms are Model Agnostic Meta Learner (MAML) (Finn, Abbeel, & Levine, 

2017), Meta-AdaM (Sun & Gao, 2023), etc. Although Meta-Learning based 

optimization algorithms have conquered the problem of training a DL with limited 
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training data. However, these algorithms are complex to design. Therefore, in the 

following subsection, the Transfer Learning based approach is described. 

B. Transfer Learning based Approach 

Transfer Learning based approaches aim to initialize optimal weight parameters for any 

DL model so that it can learn new tasks by utilizing limited training data. In this 

approach, a DL model is trained on a source task with an ample amount of annotated 

data. After that, this trained model is fine-tuned on a target task (which lies in the same 

domain) by utilizing limited annotated instances per class. In the pre-training phase, the 

model learns to extract generic features from input data, while the fine-tuning phase 

focuses on learning specific features required for new task by using only a few training 

samples per class. As compared to Meta-Learning based approaches, Transfer Learning 

based techniques are easier to design and implement. Therefore, the Transfer Learning 

approach of FSL has been utilized to design and implement the PDSE-Lite framework, 

which is described in chapter 5 of this thesis. 

2.4 Chapter Summary 
This chapter described the basic concepts of different DL and FSL based techniques, 

which have been utilized in subsequent chapters of this thesis. The next chapter 

discusses two lightweight DL models that can effectively and efficiently diagnose a 

plant disease from leaf images. 
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3. Detecting a Plant Disease from Leaf 
Images using Lightweight CNN 
Models 

This chapter presents two lightweight CNN models, namely, the PlantGhostNet model 

and the lightweight hybrid model, which can diagnose a plant disease effectively and 

efficiently from digital leaf images. As compared to other state-of-the-art techniques 

present in the literature, these models have achieved high accuracy in detecting 

Bacterial Spot disease of Peach plants despite of utilizing significantly lesser number 

of trainable weight parameters. 

3.1. Introduction 
Food is one of the basic needs of human life. The demand for food is increasing due to 

an exponential increase in the world’s population. In order to overcome such a massive 

demand for food, agricultural scientists recommend the use of different insecticides and 

pesticides to increase crop yield. However, using these in large amounts can degrade 

the soil quality, which makes crops more prone to different diseases. These diseases 

can negatively affect the crop yield and reduce the farmer’s profit. If the farmers can 

diagnose plant diseases in their initial stages, it is possible to take timely actions to cure 

the plant diseases. However, detecting diseases in a large field of crops with the naked 

eye is a challenging task. Thus, in order to simplify this process, an automatic 

framework is needed for identifying plant diseases.  

Initially researchers have leveraged various ML techniques for plant disease 

identification (Shruthi, Nagaveni, & Raghavendra, 2019; Shrivastava & Pradhan, 

2020). However, these techniques suffer from two prominent issues. Firstly, they are 

unable to automatically extract image classification features such as shape, texture, and 

color. Secondly, these techniques are not implemented in such a way that they can take 

advantage of Graphic Processing Units (GPUs) for performing faster computations. 

Thus, in order to conquer these shortcomings of ML techniques, nowadays, researchers 

are utilizing DL methods (specifically CNN) for image-based plant disease diagnosis 

(Mohanty, Hughes, & Salathé, 2016; Ferentinos, 2018).  
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Although different CNN models employed in various existing research works have 

identified plant diseases very effectively, these CNN models require huge number of 

trainable weight parameters. Thus, they are very computationally expensive. 

Furthermore, large number of trainable weight parameters also increases the size of the 

CNN model, which restricts its usage on lightweight systems like Raspberry Pi, 

Android mobiles, etc. Therefore, in order to conquer the aforementioned challenges, 

this chapter proposes two lightweight CNN models for detecting a plant disease from 

leaf images. The first proposed model is PlantGhostNet, in which the Ghost (Han, et 

al., 2020) and Squeeze-and-Excitation (Hu, Shen, & Sun, 2018) modules have been 

utilized. In the PlantGhostNet model, the Ghost Module minimizes the number of 

trainable weight parameters, whereas the Squeeze-and-Excitation Module enhances the 

model’s performance. Second proposed model is the lightweight hybrid model in which 

CAE and CNN are combined to further reduce the number of trainable weight 

parameters by a significant factor. 

In order to test the applicability of the proposed models, these models are trained to 

identify the Bacterial Spot disease of Peach plants caused by Xanthomonas campestris 

bacteria. However, these models can be used to detect disease in other plants as well. 

The leaf images of Peach plants are extracted from the PlantVillage dataset (Hughes & 

Salathe, 2015), which serves as a benchmark dataset for evaluating any ML or DL 

model designed for image based plant disease detection. Various evaluation metrics, 

namely accuracy, precision, recall, and f1-measure, are used to evaluate the 

performance of proposed models. Performance of the proposed models has been 

compared with five state-of-the-art CNN models namely, namely, LeNet-5 (Lecun, 

Bottou, Bengio, & Haffner, 1998), AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), 

VGG-16 (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy, et al., 2015), ResNet-

50 (He, Zhang, Ren, & Sun, 2016). 

The rest of the chapter is organized into four sections. Section 3.2 presents the related 

work, and section 3.3 describes the architectures of proposed models. Section 3.4 

discusses the experiments and the obtained results, followed by the chapter summary 

in section 3.5. 
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3.2. Related Work 
Various researchers have proposed several state-of-the-art methods to automate the 

disease diagnosis process in plants. In this section, several existing research works that 

employed either ML or DL techniques for automatic plant disease diagnosis have been 

discussed. Ahmed et al. (Ahmed, Shahidi, Alam, & Momen, 2019) developed a disease 

detection system for identifying three types of diseases, namely Brown Spot, Bacterial 

Blight, and Leaf Smut, in Rice plants. In their work, they applied five ML techniques 

named Logistic Regression (LR), Naïve Bayes, K-Nearest Neighbor (KNN), and 

Decision Tree classifiers for plant disease detection. Out of these techniques, the 

Decision Tree classifier outperformed other classification techniques with an accuracy 

of 97.91%. Although ML techniques can identify plant diseases effectively, but these 

techniques require hand-crafted manually extracted features for classifying the input 

leaf image into either healthy or diseased classes. Nevertheless, manually extracting 

features from leaf images requires lots of human effort and time. Therefore, various 

researchers have tried to identify plant diseases via DL methods, in which feature 

extraction is done automatically.  

Mohanty et al. (Mohanty, Hughes, & Salathé, 2016) used two popular CNN 

architectures named AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) and GoogLeNet 

(Szegedy, et al., 2015) on the PlantVillage dataset. This dataset contains 54,306 images 

of healthy and diseased plant leaf images, which are distributed among 38 different 

classes. They performed 60 experiments by varying different parameters like CNN 

architecture (AlexNet, GoogLeNet), training mechanism (transfer learning or training 

from scratch), type of images (color, grayscale, and segmented), and train-test set 

distribution. Out of these 60 experimental configurations, transfer learning in 

GoogLeNet architecture using colored image version of the dataset partitioned in an 

80%-20% split of train and test set outperformed others with an accuracy of 99.34%. 

Sanga et al. (Sanga, Machuve, & Jomanga, 2020) developed a disease detection tool 

for banana plants. They compared the performances of five different CNN 

architectures, namely VGG-16, ResNet-152, ResNet-50, ResNet-18, and InceptionV3, 

in detecting diseases from banana plant leaf images. The authors of paper found that 

ResNet-152 outperformed others with an accuracy of 99.2%. The number of trainable 
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weight parameters utilized by their best performing model, i.e., ResNet-152, was 60 

million, as mentioned in the ResNet paper (He, Zhang, Ren, & Sun, 2016).  

Similar work was also done in the paper authored by Chohan et al. (Chohan, Khan, 

Chohan, Katpar, & Mahar, 2020). They employed VGG-19 and InceptionV3 CNN 

architectures for automatic plant disease detection using the PlantVillage dataset. In 

their research work, they also used data augmentation to enlarge the dataset artificially. 

The VGG-19 model outperformed the InceptionV3 model with 98% training accuracy 

and 95% testing accuracy, as claimed by them in their paper. The number of training 

parameters used by their best performing model, i.e., VGG-19, was 143 million, as 

claimed by (Simonyan & Zisserman, 2015) in their research work. Ferentinos 

(Ferentinos, 2018) employed five different modern CNN architectures named AlexNet, 

AlexNetOWTBn, GoogLeNet, Overfeat, and VGG-16 for plant disease detection using 

the PlantVillage dataset. In his paper, he found that VGG-16 outperformed other CNN 

architectures with an accuracy of 99.5% using 138 million trainable weight parameters, 

as mentioned in the VGG-16 paper (Simonyan & Zisserman, 2015).  

Kumar and Vani (Kumar & Vani, 2019) performed different experiments on disease 

detection in Tomato leaves using four predefined CNNs, namely LeNet-5 (Lecun, 

Bottou, Bengio, & Haffner, 1998), VGG-16 (Simonyan & Zisserman, 2015), ResNet 

(He, Zhang, Ren, & Sun, 2016), and Xception (Chollet F. , 2017). They used 14,903 

images of Tomato leaves which are evenly distributed among ten classes. Out of the 

different CNN architectures, VGG-16 outperformed others with an accuracy of 

99.25%. Zhong Y and Zhao M (Zhong & Zhao, 2020) proposed a novel approach based 

on DenseNet-121 (Huang, Liu, Van Der Maaten, & Weinberger, 2017) for disease 

identification in Apple plants. They gathered Apple leaf images from a publicly 

available dataset named AI-Challenger-Plant Disease Recognition. The variants of their 

proposed model achieved 93.51%, 93.71%, and 93.31%, respectively, on the test data. 

Chen et al. (Chen, Chen, Zhang, Sun, & Nanehkaran, 2020) designed a system to 

identify diseases in Rice and Maize plants with the help of VGG-19 CNN architecture. 

Instead of training the model from scratch, they used a pre-trained VGG-19 model 

trained on the ImageNet dataset, which contains images of different categories in a large 

amount. Their model achieved 91.83% test accuracy. Karthik et al. (Karthik, et al., 
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2020) have proposed the novel Residual Progressive Feature Extraction (RPFE) block 

and used this block to build the novel attention embedded residual CNN for automatic 

tomato plant disease identification. According to their paper, their proposed model has 

achieved 98% accuracy by utilizing roughly 7.2 million trainable weight parameters.  

Zhao et al. (Zhao, et al., 2021) have used a combination of two Generative Adversarial 

Networks (GANs): Wasserstein GAN (WGAN) (Arjovsky, Chintala, & Bottou, 2017) 

and Super-Resolution GAN (SRGAN) (Ledig, et al., 2017). This combination was 

named as DoubleGAN in their paper, and it was used to augment the PlantVillage 

dataset. After this, they have trained three predefined CNN architectures: VGG16, 

ResNet-50, and DenseNet-121. They have concluded that DoubleGAN outperformed 

other augmenting methods like flipping, rotation, etc., and out of three CNN 

architectures, DenseNet-121 outperformed others with an accuracy of 99.70%. 

Mohameth et al. (Mohameth, Bingcai, & Sada, 2020) used different modern CNN 

architectures and different classifiers for automatic plant disease detection on the 

PlantVillage dataset. They employed VGG-16, ResNet-50, and GoogLeNet CNN 

architectures for feature extraction, and for classification, they used KNN and SVM 

classifiers. They observed that SVM with ResNet-50 outperformed others with an 

accuracy of 98%. As mentioned in the ResNet paper, the number of training parameters 

used by ResNet-50 was approximately 25 million (He, Zhang, Ren, & Sun, 2016).  

Similar work was also done by Tiwari et al. (Tiwari, et al., 2020). They proposed an 

automatic disease detection system for potato plants. This system used different CNN 

architectures such as VGG-19, VGG-16, and InceptionV3 for feature extraction and 

different classifiers such as LR, KNN classifier, SVM, and Neural Network for disease 

detection. They concluded that VGG-19 with LR outperformed others with an accuracy 

of 97.8%. The number of training parameters used by VGG-19 was approximately 143 

million, as claimed by (Simonyan & Zisserman, 2015). Khamparia et al. (Khamparia, 

et al., 2020) proposed a Deep Convolutional Encoder Network system for disease 

identification in seasonal crops. They considered 900 leaf images of three crops, potato, 

tomato, and maize, distributed in six classes (i.e., five diseased and one healthy). They 

achieved 100% training accuracy, while the testing accuracy of their model was 

86.78%. Since the training accuracy was much higher as compared to the testing 
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accuracy, there was a chance that the model overfitted on the training data. In their 

paper, they have also mentioned that their system used approximately 3.3 million 

training parameters, which is much higher than the number of trainable weight 

parameters utilized by the models proposed in this chapter. The summary of all above-

discussed research works has been given in Table 3.1. 

Table 3.1: Summary of various research works present in the literature on automatic 
plant disease detection. 

Research Work Dataset/ Crop Technique Used Accuracy Number of 

trainable weight 

parameters 

(Mohanty, Hughes, & 

Salathé, 2016) 

PlantVillage 

dataset 

GoogLeNet 99.34% 7 million 

(Ferentinos, 2018) PlantVillage VGG-16 99.5% 138 million 

(Kumar & Vani, 2019) PlantVillage 

dataset 

(Tomato) 

VGG-16 99.25% 138.4 million 

(Zhong & Zhao, 2020) Apple dataset DenseNet-121 93.71% 8.1 million 

(Chen, Chen, Zhang, Sun, 

& Nanehkaran, 2020) 

Rice and Maize 

datasets 

VGG-19 91.83% 143.7 million 

(Karthik, et al., 2020) PlantVillage 

dataset 

(Tomato) 

Custom CNN with 

RPFE block 

98% 600 thousand 

(Chohan, Khan, Chohan, 

Katpar, & Mahar, 2020) 

PlantVillage VGG-19 98.3% 143 million 

(Khamparia, et al., 2020) PlantVillage 

(Maize, Potato, 

and Tomato) 

CAE 86.78% 3.3 million 

(Mohameth, Bingcai, & 

Sada, 2020) 

PlantVillage ResNet-50 + SVM 98% 25 million 
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Research Work Dataset/ Crop Technique Used Accuracy Number of 

trainable weight 

parameters 

(Sanga, Machuve, & 

Jomanga, 2020) 

Self-collected 

dataset of 

Banana plants 

ResNet-152 99.2% 60 million 

(Tiwari, et al., 2020) PlantVillage 

(Potato) 

VGG-19 + Logistic 

Regression 

97.8% 143 million 

(Zhao, et al., 2021) PlantVillage 

dataset  

DoubleGAN + 

DenseNet-121 

99.7% 8.1 million 

 

All of the research works summarized in Table 3.1 are either suffer from low 

classification accuracy, or they utilize huge number of trainable weight parameters. 

Hence, this chapter proposes two lightweight CNN models that can identify a single 

disease from plant leaf images with high accuracy and a lesser number of trainable 

weight parameters. Next section of this chapter describes the proposed models. 

3.3. Proposed Lightweight CNN Models for Detecting 
a Plant Disease from Leaf Images 

This section comprises of two subsections in which the architectures of both proposed 

models are described. Subsection 3.3.1 describes the architecture of the PlantGhostNet 

model, and the architecture of the lightweight hybrid model has been discussed in 

subsection 3.3.2. 

3.3.1. PlantGhostNet Model 

The proposed PlantGhostNet model has been designed and developed by combining 

Ghost and Squeeze-and-Excitation modules. To the best of our knowledge, no research 

work present in the literature has proposed this combination. In this model, the Ghost 

Module is used to reduce the number of trainable parameters significantly, and the 

Squeeze-and-Excitation Module is utilized to boost the model’s performance by 



Lightweight and Few-Shot Image-Based Plant Disease Diagnosis and Remedy Recommender 
System 

36 

extracting features related to channels. The Ghost and Squeeze-and-Excitation modules 

have been described below: 

A. Ghost Module 

Han et al. (Han, et al., 2020) observed many redundant feature maps (Ghost feature 

maps) present in the well-trained ResNet-50 CNN architecture, and these redundant 

feature maps are generated with the help of large number of trainable weight 

parameters. Therefore, Ghost Module conquered this drawback of existing CNN 

architectures by adopting a two-fold approach for generating similar feature maps as of 

existing CNNs. This approach is described below: 

1. First Phase: In the first phase, few (say 𝑚 ≤ 𝑧, where 𝑧 are total feature map 

needs to be generated) feature maps are generated using the traditional 

convolution operation with the help of 𝑘 × 𝑘 convolutional filters. This 

operation is mathematically represented in equation 3.1, where 𝐵ᇱ ∈ ℝ௫×௬×௠ 

represents a set of 𝑚 feature maps generated in the first phase, 𝑓ᇱ ∈ ℝ௖×௞×௞×௠ 

denotes the set of convolutional filters utilized to generate 𝐵′, and 𝑔′ is the bias 

term. 

𝐵ᇱ = 𝐴 ∗ 𝑓ᇱ + 𝑔′ (3.1) 

Feature maps generated in the first phase are known as intrinsic feature maps 

and later utilized in the second phase to generate Ghost feature maps. The 𝑚 is 

the hyper-parameter, and its value can be tuned in fine-tuning process. 

2. Second Phase: In the second phase, Ghost feature maps are generated by 

applying a series of cheap1 linear operations (denoted by 𝜙) on the intrinsic 

feature maps generated in the first phase. Each intrinsic feature map present in 

the set of 𝑚 feature maps generate 𝑠 new feature maps as per equation 3.2. In 

this equation, 𝐵௜
ᇱ is the 𝑖௧௛ intrinsic feature of 𝐵′, 𝜙௜,௝ is the 𝑗௧௛ linear operation 

 
1 Han et al., (2020) referred the Depthwise convolutional operations as cheap linear operations because 
these operations require significantly lesser number of trainable weight parameters than conventional 
convolutional operation. 
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for generating 𝑗௧௛ Ghost feature map from 𝐵௜′ and the output after applying 𝜙௜,௝ 

operation is represented by 𝐵௜௝. 

𝐵௜௝ = 𝜙௜,௝(𝐵௜
ᇱ),   ∀𝑖 = 1,2, … , 𝑚,   𝑗 = 1,2, … , 𝑠 (3.2) 

Hence, by following the aforementioned two phases, the desired 𝑧 = 𝑚 ⋅ 𝑠 

feature maps are generated with the help of the Ghost Module. 

The number of trainable weight parameters utilized in Ghost Module can be computed 

in two parts, as it encompasses of two phases for generating feature maps. The weight 

parameters used in the first phase and second phase of Ghost Module have been 

mathematically calculated in equations 3.3 and 3.4, respectively. In these equations, 

𝑁ீ௛௢௦
ଵ  and 𝑁ீ௛௢௦

ଶ  denotes the number of trainable weight parameters utilized in the 

first and second phases of the Ghost Module, respectively. Moreover, 𝑑 represents the 

average kernel size of each linear operation. In a practical scenario, 𝑘 and 𝑑 have similar 

magnitude and 𝑠 ≪ 𝑐. Therefore, the total number of trainable weight parameters 

utilized in a Ghost Module can be expressed by equation 3.5. 

𝑁ீ௛௢௦௧
ଵ =

𝑧

𝑠
⋅ 𝑐 ⋅ 𝑘 ⋅ 𝑘 (3.3) 

𝑁ீ௛௢௦௧
ଶ =

𝑧

𝑠
⋅ (𝑠 − 1) ⋅ 𝑑 ⋅ 𝑑 (3.4) 

𝑁ீ௛௢௦௧ = 𝑁ீ௛௢௦௧
ଵ + 𝑁ீ௛௢௦௧

ଶ =
𝑧

𝑠
⋅ 𝑘 ⋅ 𝑘 ⋅ (𝑐 + 𝑠 − 1) (3.5) 

The speed-up ratio (𝑟௦) by using Ghost Module in place of the traditional convolutional 

layer can computed as per equation 3.6.  

𝑟௦ =
𝑁௖௢௡௩

𝑁ீ௛௢௦௧
=

𝑐 ⋅ 𝑘 ⋅ 𝑘 ⋅ 𝑧
𝑧

𝑠⁄ ⋅ 𝑘 ⋅ 𝑘 ⋅ (𝑐 + 𝑠 − 1)
=

𝑠 ⋅ 𝑐

𝑐 + 𝑠 − 1
≈ 𝑠 (3.6) 

It can be concluded from equation 3.6 that the Ghost Module can reduce trainable 

weight parameters by a factor of 𝑠. The other building block of the proposed 

PlantGhostNet model is the Squeeze-and-Excitation Module, which is described in the 

following subsection. 
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B. Squeeze-and-Excitation Module 

The convolutional filters used in convolutional layers of CNN extract hierarchical 

information from the images. The initial convolutional layers extract low-level features 

like edges or corners, whereas layers present at the end of CNN extract high-level 

features like faces, curves, etc. The convolutional layers perform the information 

extraction by using spatial and channel information of the images. The major 

shortcoming of the convolutional layer is that it gives equal weightage to all channels 

of input feature maps while creating the output feature maps.  

Thus, to overcome this shortcoming of convolutional layers, Hu et al. (Hu, Shen, & 

Sun, 2018) designed the Squeeze-and-Excitation Module that adaptively gives weight 

to each channel of the feature map. The Squeeze-and-Excitation module comprises of 

two phases: Squeeze Phase (Global Information Embedding) and Excitation Phase 

(Adaptive Recalibration). These two phases are illustrated below: 

1. Squeeze Phase (Global Information Embedding): In this phase, a vector (say 

𝑧௖) of size 1 × 1 × 𝑃஼  , is formed by applying the Global Average Pooling 

operation to the input feature map (say 𝑃) of size 𝑃஽ × 𝑃஽ × 𝑃஼ , where 𝑃஽ is the 

height and width of 𝑃, and 𝑃஼ is the number of channels in 𝑃. The mathematical 

expression for the Global Average Pooling operation (denoted by 𝑠௙), is shown 

in equation 3.7. 

𝑠௙ =
1

𝑃஽ × 𝑃஽
෍ ෍ 𝑃[𝑎, 𝑏]

௉ವ

௕ୀଵ

௉ವ

௔ୀଵ

 (3.7) 

2. Excitation Phase (Adaptive Recalibration): In this phase, the output of the 

previous phase is passed to a simple gating mechanism with a sigmoid 

activation function in the output layer. Mathematical expression for the gating 

mechanism is shown in equation 3.8,  

𝑒௙ = 𝜎൫𝑔(𝑧௖ , 𝑤)൯ = 𝜎൫𝑤ଶ
்𝛾(𝑤ଵ

்𝑧௖)൯ (3.8) 
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In equation 3.10, 𝛾 is the ReLU function, 𝜎 denotes the sigmoid activation 

function, 𝑤ଵ ∈ ℝ
಴

ೃ
×஼, and 𝑤ଶ ∈ ℝ஼×

಴

ೃ are weight matrices of the first and second 

layers, respectively. Moreover, 𝑅 denotes the reduction ratio. Finally, the output 

of the Squeeze-and-Excitation Module is obtained by performing channel wise 

multiplication operation between the output of the Excitation Phase, i.e., 𝑒௙, and 

the input feature map, i.e., 𝑃. 

The flow diagram for both phases of the Squeeze-and-Excitation Module has been 

shown in Figure 3.1. 

 

Figure 3.1: Flow diagram of Squeeze-and-Excitation Module 

In order to analyze the efficiency of the PlantGhostNet model in terms of the number 

of trainable parameters, a baseline CNN model has been designed and implemented 

without using Ghost and Squeeze-and-Excitation modules. The layer-wise 

implementation details of baseline and PlantGhostNet models are tabulated in Tables 

3.2 and 3.3, respectively. 

Table 3.2: Layer-wise implementation details of baseline CNN architecture 

Layer Layer details Input shape Output shape Number of trainable 

weight parameters 

In
pu

t 
la

ye
r 

- - 256 × 256 × 3 0 

C
on

vo
lu

ti
on

al
 

la
ye

r 
#1

 

64 filter of size 

3 × 3 

256 × 256 × 3 256 × 256 × 64 1,792 
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Layer Layer details Input shape Output shape Number of trainable 

weight parameters 

M
ax

-P
oo

lin
g 

la
ye

r 
#1

 

Pool 

window=2 × 2 

256 × 256 × 64 128 × 128 × 64 0 
C

on
vo

lu
ti

on
al

 
la

ye
r 

#2
 

128 filter of size 

3 × 3 

128 × 128 × 64 128 × 128 × 128 73,856 

M
ax

-P
oo

lin
g 

la
ye

r 
#2

 

Pool 

window=2 × 2 

128 × 128 × 128 64 × 64 × 128 0 

C
on

vo
lu

ti
on

al
 

la
ye

r 
#3

 

256 filter of size 

3 × 3 

64 × 64 × 128 64 × 64 × 256 295,168 

M
ax

-P
oo

lin
g 

la
ye

r 
#3

 

Pool 

window=2 × 2 

64 × 64 × 256 32 × 32 × 256 0 

C
on

vo
lu

ti
on

al
 

la
ye

r 
#4

 

128 filter of size 

3 × 3 

32 × 32 × 256 32 × 32 × 128 295,040 

M
ax

-P
oo

lin
g 

la
ye

r 
#4

 

Pool 

window=2 × 2 

32 × 32 × 128 16 × 16 × 128 0 

C
on

vo
lu

ti
on

al
 

la
ye

r 
#5

 

64 filter of size 

3 × 3 

16 × 16 × 128 16 × 16 × 64 73,792 

M
ax

-P
oo

lin
g 

la
ye

r 
#5

 

Pool 

window=2 × 2 

16 × 16 × 64 8 × 8 × 64 0 
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Layer Layer details Input shape Output shape Number of trainable 

weight parameters 

C
on

vo
lu

ti
on

al
 

la
ye

r 
#6

 

32 filter of size 

3 × 3 

8 × 8 × 64 8 × 8 × 32 18,464 
M

ax
-P

oo
lin

g 
la

ye
r 

#6
 

Pool 

window=2 × 2 

8 × 8 × 32 4 × 4 × 32 0 

C
on

vo
lu

ti
on

al
 

la
ye

r 
#7

 

16 filter of size 

3 × 3 

4 × 4 × 32 4 × 4 × 16 4,624 

M
ax

-P
oo

lin
g 

la
ye

r 
#7

 

Pool 

window=2 × 2 

4 × 4 × 16 2 × 2 × 16 0 

F
la

tt
en

in
g 

la
ye

r 

- 2 × 2 × 16 64 0 

D
en

se
 

la
ye

r 
#1

 32 neurons 

activated by 

ReLU function 

64 32 2,080 

D
en

se
 la

ye
r 

#2
 

(O
ut

pu
t l

ay
er

) 1 neuron 

activated by 

sigmoid function 

32 1 33 

Total trainable parameters 764,849 
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Table 3.3: Layer-wise implementation details of the proposed PlantGhostNet model 

Layer Layer details Input shape Output shape Number of trainable 

weight parameters 

In
pu

t l
ay

er
 - - 256 × 256 × 3 0 

G
ho

st
 

m
od

ul
e 

#1
  𝑧 = 64,  

𝑘, 𝑑 = 3 × 3 

𝑠 = 16 

256 × 256 × 3 256 × 256 × 64 648 

S
qu

ee
ze

-a
nd

-
E

xc
it

at
io

n 
m

od
ul

e 
#1

 

𝑅 = 8 256 × 256 × 64 256 × 256 × 64 1024 

M
ax

-P
oo

lin
g 

la
ye

r 
#1

 

Pool 

window=2 × 2 

256 × 256 × 64 128 × 128 × 64 0 

G
ho

st
 

m
od

ul
e 

#2
 𝑧 = 128, 

𝑘, 𝑑 = 3 × 3 

𝑠 = 16 

128 × 128 × 64 128 × 128 × 128 5,688 

S
qu

ee
ze

-a
nd

-
E

xc
it

at
io

n 
m

od
ul

e 
#2

 𝑅 = 16 128 × 128 × 128 128 × 128 × 128 2184 

M
ax

-P
oo

lin
g 

la
ye

r 
#2

 

Pool 

window=2 × 2 

128 × 128 × 128 64 × 64 × 128 0 

G
ho

st
 

m
od

ul
e 

#3
 𝑧 = 256, 

𝑘, 𝑑 = 3 × 3 

𝑠 = 16 

64 × 64 × 128 64 × 64 × 256 20,592 

S
qu

ee
ze

-a
nd

-
E

xc
it

at
io

n 
m

od
ul

e 
#3

 𝑅 = 16 64 × 64 × 256 64 × 64 × 256 8,464 

M
ax

-P
oo

lin
g 

la
ye

r 
#3

 

Pool 

window=2 × 2 

64 × 64 × 256 32 × 32 × 256 0 
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Layer Layer details Input shape Output shape Number of trainable 

weight parameters 

G
ho

st
 

m
od

ul
e 

#4
 𝑧 = 128, 

𝑘, 𝑑 = 3 × 3 

𝑠 = 16 

32 × 32 × 256 32 × 32 × 128 19,512 
S

qu
ee

ze
-a

nd
-

E
xc

it
at

io
n 

m
od

ul
e 

#4
 𝑅 = 16 32 × 32 × 128 32 × 32 × 128 2,184 

M
ax

-P
oo

lin
g 

la
ye

r 
#4

 

Pool 

window=2 × 2 

32 × 32 × 128 16 × 16 × 128 0 

G
ho

st
 

m
od

ul
e 

#5
 𝑧 = 64, 𝑘, 𝑑 =

3 × 3 

𝑠 = 16 

16 × 16 × 128 16 × 16 × 64 5,148 

S
qu

ee
ze

-a
nd

-
E

xc
it

at
io

n 
m

od
ul

e 
#5

 𝑅 = 8 16 × 16 × 64 16 × 16 × 64 1,096 

M
ax

-P
oo

lin
g 

la
ye

r 
#5

 

Pool 

window=2 × 2 

16 × 16 × 64 8 × 8 × 64 0 

G
ho

st
 m

od
ul

e 
#6

 

𝑧 = 32, 𝑘, 𝑑 =

3 × 3 

𝑠 = 8 

8 × 8 × 64 8 × 8 × 32 2,556 

S
qu

ee
ze

-a
nd

-
E

xc
it

at
io

n 
m

od
ul

e 
#6

 

𝑅 = 4 8 × 8 × 32 8 × 8 × 32 552 

M
ax

-P
oo

lin
g 

la
ye

r 
#6

 

Pool 

window=2 × 2 

8 × 8 × 32 4 × 4 × 32 0 
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Layer Layer details Input shape Output shape Number of trainable 

weight parameters 

G
ho

st
 

m
od

ul
e 

#7
 𝑧 = 16, 𝑘, 𝑑 =

3 × 3 

𝑠 = 4 

4 × 4 × 32 4 × 4 × 16 1,260 

S
qu

ee
ze

-a
nd

-
E

xc
it

at
io

n 
m

od
ul

e 
#7

 𝑅 = 2 4 × 4 × 16 4 × 4 × 16 280 

M
ax

-P
oo

lin
g 

la
ye

r 
#7

 

Pool 

window=2 × 2 

4 × 4 × 16 2 × 2 × 16 0 

F
la

tt
en

in
g 

la
ye

r 

- 2 × 2 × 16 64 0 

D
en

se
 

la
ye

r 
#1

 32 neurons 

activated by 

ReLU function 

64 32 2,080 

D
en

se
 la

ye
r 

#2
 

(O
ut

pu
t l

ay
er

) 1 neuron 

activated by 

sigmoid 

function 

32 1 33 

Total trainable parameters 73,301 

 

It can be observed from Tables 3.2 and 3.3 that the PlantGhostNet model utilizes around 

ten times fewer trainable weight parameters than the baseline CNN model created 

without using Ghost and Squeeze-and-Excitation modules. However, the trainable 

weight parameters of the PlantGhostNet model are around seventy-three thousand, 

which is still high. Therefore, a lightweight hybrid model based on CAE and CNN has 

also been proposed in this chapter, which reduces the trainable weight parameters 

further by a significant factor. This model has been described in the next subsection. 

3.3.2. Lightweight Hybrid Model based on CAE and CNN 

The proposed lightweight hybrid model utilizes two DL techniques, namely CAE and 

CNN, which have been described in the previous chapter. In this model, firstly the CAE 
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network has been trained to reduce the spatial dimensions of leaf images. The reduction 

of spatial dimensions of the leaf images has been done such that the important features 

of the leaf images are preserved. This has been ensured by applying the upper limit on 

the Reconstruction Loss of CAE. After reducing the spatial dimensions of leaf images, 

the output of the Encoder Network of CAE (i.e., compressed domain representations of 

leaf images) is used as input to the CNN. With the help of CNN, the input leaf images 

have been classified into either diseased or healthy classes. 

The process of designing the proposed lightweight hybrid model comprises of two 

steps. In the first step, a CAE network has been designed and developed to reduce the 

spatial dimensions of the input leaf images from 256 × 256 × 3 to 32 × 32 × 8. 

Architecture of the CAE network is shown in Figure 3.2, and its layer-wise 

implementation details are tabulated in Table 3.4.  

 

Figure 3.2: CAE network architecture for the proposed lightweight hybrid model 

The CAE network also contains a Decoder Network that is used to reconstruct the 

original leaf images from the encoded data. Training of the CAE network is done such 

that the Reconstruction Loss is minimized. This ensures that the CAE network reduces 
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the spatial dimensions of the leaf images without losing their important features. In this 

chapter, the Normalized Root Mean Squared Error (NRMSE) (Feng, Feng, Ozer, & 

Fukuda, 2015) loss function is used to compute the Reconstruction Loss between the 

original leaf images and the reconstructed leaf images. The formula to compute 

NRMSE is shown in equation 3.9. In this equation, 𝑋ை is the set of original leaf images, 

𝑋ோ is the set of leaf images reconstructed by the CAE network, 𝑁 is the total number 

of leaf images taken into consideration. Moreover, 𝑃௠௔௫௜௠௨௠ denotes the maximum 

pixel intensity in the input leaf images, i.e., 255 and 𝑃௠௜௡௜௠௨௠ is the minimum pixel 

intensity in the input leaf images, i.e., 0. 

𝑁𝑅𝑀𝑆𝐸 (𝑋ை , 𝑋ோ) =  
ට1

𝑁
∑ (𝑋ை − 𝑋ோ)ଶே

௜ୀଵ

𝑃௠௔௫௜௠௨௠ − 𝑃௠௜௡௜௠௨௠
 

(3.9) 

Table 3.4: Layer-wise implementation details of CAE network architecture for the 
proposed lightweight hybrid model 

Layer 

number 

Layer name Input shape Output shape Number of trainable 

weight parameters 

1 Input Layer 256 × 256 × 3 256 × 256 × 3 0 

2 Conv #1 256 × 256 × 3 256 × 256 × 16 448 

3 MaxPool #1 256 × 256 × 16 128 × 128 × 16 0 

4 Conv #2 128 × 128 × 16 128 × 128 × 8 1,160 

5 MaxPool #2 128 × 128 × 8 64 × 64 × 8 0 

6 Conv #3 64 × 64 × 8 64 × 64 × 8 584 

7 MaxPool #3 64 × 64 × 8 32 × 32 × 8 0 

8 Conv #4 (Bottleneck 

Layer) 

32 × 32 × 8 32 × 32 × 8 584 

9 UpSampling Layer 

#1 

32 × 32 × 8 64 × 64 × 8 0 

10 Conv #5 64 × 64 × 8 64 × 64 × 8 584 
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Layer 

number 

Layer name Input shape Output shape Number of trainable 

weight parameters 

11 UpSampling Layer 

#2 

64 × 64 × 8 128 × 128 × 8 0 

12 Conv #6 128 × 128 × 8 128 × 128 × 8 584 

13 UpSampling Layer 

#3 

128 × 128 × 8 256 × 256 × 8 0 

14 Conv #7 (Output 

Layer) 

256 × 256 × 8 256 × 256 × 3 219 

Total number of trainable parameters 4,163 

 

After reducing the spatial dimensions of input leaf images, CNN has been applied to 

classify the input leaf images into either diseased or healthy classes. The output of the 

Bottleneck Layer of the CAE is taken as the input for the CNN. Figure 3.3 depicts the 

architecture of CNN that is used to classify leaf images. The proposed lightweight 

hybrid model has been designed by concatenating the layers of the Encoder network of 

CAE and the layers of the CNN. The architecture of the proposed lightweight hybrid 

model is shown in Figure 3.4, and details of its layer-wise implementation are shown 

in Table 3.5. 

 

Figure 3.3: CNN architecture for the proposed lightweight hybrid model 
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Figure 3.4: Architecture of the proposed lightweight hybrid model 

Table 3.5: Layer-wise implementation details of the proposed lightweight hybrid model 

Layer 

number 

Layer name Input shape Output shape Number of trainable 

weight parameters 

1 Input Layer 256 × 256 × 3 256 × 256 × 3 0 

2 Conv #1 256 × 256 × 3 256 × 256 × 16 448 

3 MaxPool #1 256 × 256 × 16 128 × 128 × 16 0 

4 Conv #2 128 × 128 × 16 128 × 128 × 8 1,160 

5 MaxPool #2 128 × 128 × 8 64 × 64 × 8 0 

6 Conv #3 64 × 64 × 8 64 × 64 × 8 584 

7 MaxPool #3 64 × 64 × 8 32 × 32 × 8 0 

8 Conv #4 (Bottleneck 

Layer) 

32 × 32 × 8 32 × 32 × 8 584 

9 Conv #8 32 × 32 × 8 30 × 30 × 6 438 



3. Detecting a Plant Disease from Leaf Images using Lightweight CNN Models 

49 

Layer 

number 

Layer name Input shape Output shape Number of trainable 

weight parameters 

10 MaxPool #4 30 × 30 × 6 15 × 15 × 6 0 

11 Conv #9 15 × 15 × 6 13 × 13 × 16 880 

12 MaxPool # 5 13 × 13 × 16 6 × 6 × 16 0 

13 Conv #10 6 × 6 × 16 4 × 4 × 16 2,320 

14 MaxPool # 6 4 × 4 × 16 2 × 2 × 16 0 

15 Flatten Layer 2 × 2 × 16 64 0 

16 Dense #1 64 32 2,080 

17 Dense #2 (Sigmoid) 32 1 33 

Total trainable weight parameters 5,751 

Total non-trainable parameters 2,776 

Total weight parameters 8,527 

 

The layers of the Encoder network of CAE (i.e., layer 1 to layer 8) and layers of CNN 

(i.e., layer 8 to layer 17) have been used to create the proposed lightweight hybrid 

model. Since the layers imported from the encoder network of CAE are pre-trained, the 

trainable weight parameters of these layers are not included while computing the 

trainable weight parameters of the hybrid model. Hence, it can be observed from Table 

3.5 that the lightweight hybrid model uses only 5,751 trainable weight parameters and 

2,776 non-trainable weight parameters. Moreover, it can also be observed from Table 

3.4 that the CAE network uses 4,163 trainable weight parameters. Thus, the total 

trainable weight parameters used in the proposed lightweight hybrid model can be 

expressed by equation 3.10. Here, 𝑇𝑇௪௣
௅ுெ represents the total number of trainable 

weight parameters used in the lightweight hybrid model, and 𝑇𝑊𝑃௅ுெ denotes the total 

number of weight parameters utilized in the lightweight hybrid model. Furthermore, 
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𝑇௪௣
஼஺ா represents the trainable weight parameters of the CAE model, and 𝑁𝑇௪௣

௅ுெdenotes 

the number of non-trainable weight parameters of the lightweight hybrid model. 

𝑇𝑇௪௣
௅ுெ = 𝑇𝑊𝑃௅ுெ + 𝑇௪௣

஼஺ா − 𝑁𝑇௪௣
௅ுெ = 8527 + 4163 − 2776 = 9914 (3.10) 

Next section of this chapter presents the experimental study performed to analyze the 

performances of proposed PlantGhostNet and lightweight hybrid models. Moreover, 

the experimental results obtained from different experiments are also discussed in the 

next section. 

3.4. Experimental Study and Results 

The practical implementation of the proposed models has been done on a Windows 

system with an Intel® i7-10750H processor, 32GB RAM, and Nvidia GeForce GTX 

1650 graphic card. Moreover, PyCharm Integrated Development Environment (IDE) 

has been used to write the Python script to perform the experiments. However, these 

experiments can also be performed using other programming languages like R, 

MATLAB, etc. The proposed models are developed and trained using Keras 

Application Programming Interface (API) (Chollet F. , 2015) with Tensorflow backend.  

The performance of proposed PlantGhostNet and lightweight hybrid models has been 

compared with the baseline CNN model along with five state-of-the-art CNN 

architectures, namely, LeNet-5 (Lecun, Bottou, Bengio, & Haffner, 1998), AlexNet 

(Krizhevsky, Sutskever, & Hinton, 2012), VGG-16 (Simonyan & Zisserman, 2015), 

GoogLeNet (Szegedy, et al., 2015), ResNet-50 (He, Zhang, Ren, & Sun, 2016). This 

section is divided into three subsections. Section 3.4.1 provides the details of the dataset 

that has been utilized for training and evaluating the PlantGhostNet model, lightweight 

hybrid model, baseline CNN model, and five state-of-the-art CNN architectures. 

Section 3.4.2 provides the best values of different hyperparameters, followed by section 

3.4.3, in which the experimental results are provided and discussed.  

3.4.1. Dataset Description 

The PlantGhostNet and lightweight hybrid models have been trained on Peach plant 

leaf images collected from the PlantVillage dataset (Hughes & Salathe, 2015). There 
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are 2,160 healthy leaf images and 2,297 leaf images suffered from Bacterial Spot 

disease, which is caused by the Xanthomonas Campestris bacterium. Few healthy and 

diseased leaf images of Peach plants are shown in Figure 3.5. 

 

Figure 3.5: Few healthy and diseased leaf images of Peach plants 

The train_test_split function of the scikit-learn API (Pedregosa, Varoquaux, Gramfort, 

& V., 2011) is used to divide these images in a 70:15:15 ratio to create the training, 

validation, and testing subsets. Hence, the training subset has 3,120 leaf images, the 

validation subset has 668 leaf images, and the test subset has 669 leaf images. The leaf 

images present in the training subset are utilized to train the proposed models, and the 

validation subset’s leaf images are used to tune different hyperparameters of the 

proposed models. On the other hand, leaf images available in test subsets are utilized 

to evaluate the performance of the proposed models on unseen data. 

Next section provides the best values of different hyperparameters for proposed 

PlantGhostNet and lightweight hybrid models.  

3.4.2. Hyperparameter Selection 

The proposed models comprise of various hyperparameters, and the values of each and 

every hyperparameter can significantly affect the model’s performance. Hence, in order 

to get the best values of hyperparameters, the PlantGhostNet and lightweight hybrid 

models have been trained and tested on different values of hyperparameters. After 

extensive experimentation, the best values of these hyperparameters for PlantGhostNet 

and lightweight hybrid models have been obtained and tabulated in Table 3.6 and Table 

3.7, respectively.  
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Table 3.6: Best values of different hyperparameters used to implement the PlantGhostNet 
model 

Hyperparameter Number of 

Ghost and 

Squeeze-and-

Excitation 

modules 

Activation 

function 

Loss 

function 

Optimizer Learning 

rate 

Epochs Batch 

size 

Value 7 ReLU (for hidden 

layers)  

MSE Adam 

(Kingma 

& Ba, 

2014) 

0.001 100 16 

Sigmoid (for 

output layer) 

 
Table 3.7: Best values of different hyperparameters used to develop the lightweight 
hybrid model 

Hyperparameter Loss function Optimizer Learning 

rate 

Epochs Batch 

size 

Value NRMSE (for CAE) 

MSE (for lightweight 

hybrid model) 

Adam 

(Kingma & 

Ba, 2014) 

0.001 200 (for CAE) 

100 (for lightweight 

hybrid model) 

32 

Early stopping has been used to prevent the proposed models from overfitting. The 

patience value for early stopping is 5 (i.e., if the testing loss does not improve over five 

consecutive epochs, then the training will stop). Next subsection provides and discusses 

the results obtained from experimentation. 

3.4.3. Results and Discussion 

Performance of the proposed models has been evaluated and compared with the 

baseline CNN model and five state-of-the-art CNN architectures with the help of four 

evaluation metrics, namely accuracy, precision, recall, and f1-measure. These metrics 

are expressed in terms of True Positives (TP), True Negatives (TN), False Positives 

(FP), and False Negatives (FN). 

In the domain of plant disease detection, TP signifies the number of diseased leaf 

images that are classified as diseased. On the other hand, TN connotates the number of 
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healthy leaf images that are classified as healthy by the model. The FN and FP represent 

the number of healthy and diseased leaf images that are classified as diseased and 

healthy by the model, respectively. The mathematical formulas of these metrics are 

given in equations 3.11, 3.12, 3.13, and 3.14, respectively (Zaki & Wagner, 2020). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.11) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.12) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.13) 

𝑓1-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

=
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.14) 

In this section, the results of PlantGhostNet model are given first, followed by the 

results of the lightweight hybrid model. 

A. Results of PlantGhostNet Model 

Performance of PlantGhostNet and baseline CNN models, along with five other state-

of-the-art CNN architectures, have been evaluated on validation subset using accuracy 

and MSE loss metric. The trend of validation accuracy (accuracy on validation subset) 

and validation loss (MSE loss on validation subset) for the aforementioned models has 

been represented by a line chart shown in Figures 3.6 and 3.7, respectively. 

It can be observed from Figure 3.6 that the proposed PlantGhostNet model has achieved 

maximum validation accuracy, i.e., 99.75%. Furthermore, VGG-16 achieved minimum 

accuracy, i.e., 93.83%, among other models. The performances of AlexNet and ResNet-

50 CNN architectures are comparable. Additionally, LeNet-5 and GoogLeNet achieved 

95.53% and 98.02% validation accuracies, respectively. The same trend can also be 

observed for the validation loss, as shown in Figure 3.7. 
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Figure 3.6: Trend of validation accuracy with respect to the number of epochs for 
proposed PlantGhostNet and baseline CNN model along with five state-of-the-art CNN 
architectures 

 

Figure 3.7: Trend of validation loss with respect to the number of epochs for proposed 
PlantGhostNet and baseline CNN model along with five state-of-the-art CNN 
architectures 

The proposed PlantGhostNet model’s performance is also evaluated and compared with 

baseline and five other state-of-the-art CNN architectures on testing subset via 

accuracy, precision, recall, and f1-measure metrics. The scores of these metrics for all 

models have been plotted with the help of a bar graph in Figure 3.8.  
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Figure 3.8: Accuracy, precision, recall, and f1-measure of proposed PlantGhostNet and 
baseline CNN model along with five state-of-the-art CNN architectures 

It can be perceived from this figure that the PlantGhostNet model outperformed other 

architectures with 99.51% testing accuracy and 99.5% f1-measure. In addition, 

GoogLeNet, ResNet-50, and the baseline CNN model have achieved comparable 

performance. On the other hand, LeNet-5 and VGG-16 have attained minimum values 

for the aforementioned metrics. Next subsection provides the results of proposed 

lightweight hybrid model. 

B. Results of Lightweight Hybrid Model 

In this section, first, the results of the CAE network have been shown. After that, the 

results of the proposed lightweight hybrid model are presented. 

The NRMSE loss has been used to evaluate the performance of the CAE network. It is 

computed with the help of original leaf images and reconstructed leaf images using 

equation 3.9. The change in NRMSE loss with respect to the number of epochs on the 

training and validation subsets of the dataset has been shown in Figure 3.9. Moreover, 

few original leaf images with their corresponding reconstructed leaf images have been 

depicted in Figure 3.10. 

It can be observed from Figure 3.9 that the NRMSE loss is reducing as the number of 

epochs increases, and after the 22nd epoch, the loss does not change significantly. 

During experimentation, it is found that after completion of the training process, the 
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values of NRMSE loss on training, validation, and test subsets are 0.0597, 0.0607, and 

0.0612, respectively. 

 

Figure 3.9: Change in NRMSE loss with respect to the number of epochs on the training 
and validation subsets of the dataset 

 

Figure 3.10: Few original and reconstructed leaf images of peach plants. (Top row) 
original leaf images. (Bottom row) reconstructed leaf images using the CAE network of 
the proposed lightweight hybrid model. 

The low values of NRMSE loss on training, validation, and test subsets can also be 

qualitatively verified by observing Figure 3.10, in which the original and reconstructed 

leaf images have been shown. It can be visualized through Figure 3.10 that 

reconstructed leaf images are looking very similar to the original leaf images. Hence, it 

justifies the low value obtained for reconstruction loss (NRMSE loss). 

Performance of the proposed lightweight hybrid model on the validation subset of the 

dataset has been compared with the PlantGhostNet model and five other state-of-the-

art CNN architectures with line charts in Figures 3.11 and 3.12. 
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Figure 3.11: Variation of validation accuracy with respect to the number of epochs for the 
proposed lightweight hybrid model and PlantGhostNet model, along with five state-of-
the-art CNN architectures 

 

Figure 3.12: Variation of validation loss with respect to the number of epochs for the 
proposed lightweight hybrid model and PlantGhostNet model, along with five state-of-
the-art CNN architectures 

It can be observed from Figure 3.11 that the validation accuracy of the VGG-16 model 

is minimum, i.e., 93.83%, among all other models. The VGG-16 model is a very deep 

CNN architecture. Thereby, it may suffer from the vanishing gradient problem. Hence, 

this may be the possible reason behind the VGG-16 model’s low performance. The 

validation accuracy of LeNet-5 and GoogLeNet is 95.53% and 98.02%, respectively. It 

can also be seen from Figure 3.11 that the accuracies of PlantGhostNet, AlexNet, and 

ResNet-50 models on the validation subset are slightly higher than the accuracy of the 

proposed lightweight hybrid model. However, the number of trainable weight 

parameters utilized by the proposed model is significantly less than other models. 
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Hence, it can be considered that the proposed lightweight hybrid model can effectively 

and efficiently identify a plant disease from their digital leaf images. The same fact can 

also be argued by analyzing the trend of validation loss incurred during the training 

process of the proposed model and its other counterparts, as shown in Figure 3.12.  

In order to investigate the proposed lightweight hybrid model more thoroughly, its 

performance is evaluated on the test subset and compared with the performances of the 

PlantGhostNet model and five other state-of-the-art CNN architectures. This 

performance comparison is shown in Figure 3.11 with the help of four evaluation 

metrics, namely, accuracy, precision, recall, and f1-measure (Zaki & Wagner, 2020). 

 

Figure 3.13: Accuracy, precision, recall, and f1-measure of the proposed lightweight 
hybrid model and PlantGhostNet model, along with five other state-of-the-art CNN 
architectures. 

It can be perceived from Figure 3.11 that LeNet-5 and VGG-16 models have achieved 

91.81% and 93.10% f1-measure on the test subset of the dataset, which is the lowest 

among all other models. Moreover, the performance of ResNet-50, GoogLeNet, and 

AlexNet in terms of f1-measure are 95.16%, 96.11%, and 98.33%, respectively. It can 

also be seen from this figure that the f1-measure of the proposed lightweight hybrid 

model is approximately 1% less than the PlantGhostNet model. However, this model is 

much lighter than the PlantGhostNet model with respect to the number of trainable 

weight parameters. As it requires only 9,914 trainable weight parameters, whereas the 

PlantGhostNet model utilizes roughly 73,301 weight parameters, which is 

approximately seven times higher than the proposed lightweight hybrid model. 
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In order to examine the lightweight nature of the proposed models, the number of 

trainable weight parameters employed in these models are compared with the baseline 

CNN model along with five other state-of-the-art CNN architectures in Table 3.8. It can 

be perceived from this table that the proposed lightweight hybrid model requires the 

least number of trainable weight parameters, i.e., 9,914, among other models. Further, 

the PlantGhostNet model utilizes roughly 73 thousand trainable weight parameters, and 

LeNet-5 CNN architecture requires 61 thousand trainable weight parameters. The 

VGG-16 model uses 138 million trainable weight parameters, which is the maximum 

among other models. It can also be observed from Table 3.8 that AlexNet and baseline 

CNN architectures utilized comparable trainable weight parameters. The research work 

presented in this chapter is also compared in Table 3.9 with existing state-of-the-art 

research works available in the literature. 

Table 3.8: Number of trainable weight parameters used by proposed PlantGhostNet and 
baseline CNN model along with five state-of-the-art CNN architectures 

Model Number of trainable weight 

parameters (approximately) 

LeNet-5 61 thousand 

AlexNet 650 thousand 

VGG-16 138 million 

GoogLeNet 7 million 

ResNet-50 25.6 million 

Baseline CNN model 765 thousand 

PlantGhostNet 73 thousand 

Proposed lightweight hybrid model 9,914 

 

It can be seen from this table that the proposed lightweight hybrid model has 

outperformed all research works given in Table 3.9 despite of using the least number 

of trainable weight parameters. Hence, it can be concluded that the proposed models 
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have several advantages over existing state-of-the-art research works present in the 

literature. 

Table 3.9: Comparison of proposed models with state-of-the-art research works present 
in the literature 

Research Work Technique Accuracy Number of trainable weight 

parameters (approximately) 

(Mohanty, Hughes, & 

Salathé, 2016) 

GoogLeNet 99.34% 

 

7 million 

(Zhao, et al., 2021) DoubleGAN + DenseNet-121 99.7% 8.1 million 

Proposed work PlantGhostNet 99.51% 73,301 

Lightweight hybrid model 

based on CAE and CNN 

98.38% 9,914 

 

The proposed models have two prominent use cases. First, it can be trained and used 

for automatic plant disease detection on low-computational powered systems with less 

training time and prediction time. Second, the proposed models can also be trained and 

used on smartphones. Running a DL model in mobile applications instead of sending 

leaf images of plants to the cloud/server reduces the latency and provides data privacy 

to farmers. 

3.5. Chapter Summary 

In this chapter, two lightweight CNN models, namely PlantGhostNet and lightweight 

hybrid model, were proposed to diagnose a plant disease effectively and efficiently 

using leaf images. The PlantGhostNet model utilized the Ghost Module to reduce the 

number of trainable parameters, and the Squeeze-and-Excitation Module was used to 

further enhance the performance of the PlantGhostNet model. The lightweight hybrid 

model was designed and developed by combining the CAE and CNN models. This 

model first obtained the compressed domain representations of leaf images using the 

Encoder network of CAE and then used these compressed domain representations for 

classification using CNN. Due to the reduction in spatial dimensions of leaf images 
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using CAE, the number of features, and hence the number of training parameters 

reduced significantly.  

Though the models proposed in this chapter can effectively and efficiently identify a 

plant disease from leaf images. However, in the real world, different types of diseases 

can infect a crop, and designing an individual DL model for each disease is costly. 

Therefore, next chapter of this thesis tries to mitigate the aforementioned problem by 

designing a novel effective and efficient DL model to identify different diseases of a 

crop from their digital leaf images. 
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4. Lightweight and Improved Vision 
Transformer Model to Detect Multiple 
Plant Diseases from Leaf Images 

This chapter proposes a lightweight and improved ViT model named Trans-Inception 

Network (TrIncNet) for diagnosing multiple plant diseases with the help of their digital 

leaf images. The proposed TrIncNet model can diagnose multiple plant diseases very 

effectively and efficiently as compared to other state-of-the-art models present in the 

literature. Additionally, in order to enhance the confidence of farmers and agricultural 

scientists in predictions of the proposed model, human understandable visual 

explanations are also provided along with the predictions. 

4.1. Introduction 
The previous chapter of this thesis primarily focuses on identifying a single type of 

plant disease from leaf images. However, in real-world scenarios, crops can be infected 

by several types of diseases, and developing an individual DL model for each crop-

disease pair is very costly and time-consuming. Therefore, an effective and efficient 

DL model is required to identify multiple plant diseases. Moreover, human 

interpretable visual explanations are also required to enhance the trust of farmers and 

agricultural scientists in the predictions of the model. 

In literature, various researchers have utilized either state-of-the-art CNN architectures 

or customized CNN architectures for diagnosing plant diseases via their symptomatic 

leaf images (Atila, Uçar, Akyol, & Uçar, 2021; Dhaka, et al., 2021; Tiwari, Joshi, & 

Dutta, 2021). Some researchers have also applied the ViT model to detect plant diseases 

automatically (Borhani, Khoramdel, & Najafi, 2022). Despite of high performance of 

the ViT model, this model suffers from a major drawback that it contains an MLP 

module in its encoder block, which is computationally expensive as well as inefficient 

in extracting various temporal and spatial features from leaf images. 

Therefore, this chapter proposes a comparatively less computationally expensive ViT 

model named “TrIncNet” for diagnosing multiple plant diseases. The TrIncNet model 

comprises of multiple modified encoder blocks named “Trans-Inception blocks,” which 
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comprise of the Inception module in place of the MLP module for extracting various 

temporal and spatial features from leaf images. Additionally, skip connections are also 

added around each Trans-Inception block to make the proposed model more resistant 

towards the vanishing gradient problem. The proposed TrIncNet model has been trained 

and tested on two plant disease datasets viz: PlantVillage dataset (Hughes, Salathé, & 

Mohanty, 2015) and in-field Maize dataset (Haque, et al., 2022) for showcasing the 

applicability of the proposed model in the real-world scenario. Moreover, the 

comparative performance analysis of the proposed model has also been done with the 

existing state-of-the-art models, namely, VGG-19, GoogLeNet, ResNet-50, Xception, 

InceptionV3, MobileNet, and ViT on both datasets. 

Due to the complex and deep nested structure of DL models, these models are 

considered as black-box. Thus, in order to provide human understandable visual 

explanations for the predictions of these models, different researchers have proposed 

various eXplainable Artificial Intelligence (XAI) algorithms. Local Interpretable 

Model Agnostic (LIME) is an XAI algorithm that can efficiently provide visual 

explanations for the predictions of any ML or DL model (Ribeiro, Singh, & Guestrin, 

2016). In order to enhance the trust of farmers in the predictions of the proposed model, 

human interpretable visual explanations are also provided with the help of LIME 

framework. 

Rest of the chapter is organized into four sections. Section 4.2 explores and discusses 

various research works present in the literature on plant disease detection. Section 4.3 

describes the proposed TrIncNet model. Section 4.4 discusses the experiments and the 

obtained results, followed by the chapter summary in section 4.5. 

4.2. Related Work 
Many research efforts are made in literature to automatically identify plant diseases via 

their digital leaf images. Earlier, researchers applied different ML techniques (Trivedi, 

Shamnani, & Gajjar, 2020; Varshney, Babukhanwala, Khan, Saxena, & Singh, 2021) 

for automatic plant disease identification. Nowadays, researchers are utilizing DL 

methods, particularly CNNs, to identify plant diseases automatically, as these 

techniques can extract various spatial and temporal features from images automatically. 

Haque et al. (Haque, et al., 2022) investigated the effect of the dense layer, global 
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average pooling layer, and flatten layer on the performance of the InceptionV3 

(Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016) model in detecting three types of 

diseases in maize plants. After experimentation, they concluded that the InceptionV3 

model with a global average pooling layer outperformed others by achieving 95.71% 

accuracy. Nigam et al. (Nigam, et al., 2023) experimented with eight EfficientNet-

based CNN architectures to identify Stem Rust, Stripe Rust, and Leaf Rust diseases in 

wheat plants. They found that EfficientNet-B4 CNN architecture outperformed other 

architectures with 99.35% testing accuracy.  

Some researchers tried to build a lightweight DL model for plant disease diagnosis. 

Xiang et al. (Xiang, Liang, Sun, Zhang, & Wang, 2021) developed a lightweight 

network to identify plant diseases. They designed a lightweight CNN model with the 

help of multiple-size convolutional filters and channel shuffle operation. Their best 

model achieved 90.6% accuracy and 84.3% f1-measure on the PlantVillage dataset. 

Haque et al. (Haque, Marwaha, Deb, Nigam, & Arora, 2023) proposed a custom 

lightweight CNN model for detecting four diseases in maize crops using leaf images 

obtained from the PlantVillage dataset. Their proposed network worked quite well on 

the test dataset and obtained 99.1% classification accuracy. Sharma et al. (Sharma, 

Tripathi, & Mittal, 2023) designed a lightweight DLMC-Net model by using novel 

collective blocks and passage layers. Moreover, they used depth-wise separable 

convolution operation to reduce the number of trainable weight parameters. Their 

proposed DLMC-Net model achieved 93.56%, 92.34%, 99.50%, and 96.56% accuracy 

in detecting twenty diseases from the leaf images of citrus, cucumber, grapes, and 

tomato plants, respectively. 

In some recent studies, the attention mechanism has also been utilized to enhance the 

efficacy of different DL frameworks. Karthik et al. (Karthik, et al., 2020) designed a 

novel Attention based Residual CNN architecture for disease diagnosis in tomato plants 

and achieved 98% accuracy in detecting ten tomato plant diseases. Chen et al. (Chen, 

Wang, Zhang, Zeb, & Nanehkaran, 2021) embedded channel and spatial attention 

modules in the DenseNet CNN architecture and used the depth-wise separable 

convolution operation in place of the standard convolution operation. They evaluated 

the applicability of their approach in identifying four diseases of maize plants on their 
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own collected dataset and PlantVillage dataset. The authors reported in the paper that 

their model attained 95.86% and 98.5% accuracy on their collected and PlantVillage 

datasets, respectively. Zhao et al. (Zhao, Sun, Xu, & Chen, 2022) designed the RIC-

NET model using Residual and Inception blocks. They used the Convolutional Block 

Attention Module (CBAM) to enhance the RIC-NET model’s performance. Their 

model identified seventeen types of diseases in potato, corn, and tomato plants with 

99.55% accuracy, as claimed by the authors. Li et al. (Li, et al., 2023) designed a novel 

Muti-Dilated-CBAM-DenseNet (MDCDenseNet) architecture to identify maize plant 

diseases from the farmlands. Their proposed model attained 98.84% testing accuracy 

on the maize plant leaf images collected from the agricultural fields of Northeastern 

Agricultural University, China. Naik et al. (Naik, Malmathanraj, & Palanisamy, 2022) 

used the Squeeze-and-Excitation CNN (SECNN) to detect five diseases (down curl of 

a leaf, geminivirus, cercospora leaf spot, yellow leaf disease, and up curl) in Chili 

plant’s leaf images. Their proposed model attained 98.63% and 99.12% accuracy 

without data augmentation and with data augmentation, respectively. Moreover, they 

assessed the model’s performance on the PlantVillage dataset and found that the 

SECNN model achieved 99.28% accuracy. Pandey and Jain (Pandey & Jain, 2022) 

proposed a novel attention-based learning paradigm to improve the CNN model’s 

performance in diagnosing plant diseases from leaf images. Their proposed model 

achieved 99.93% accuracy on the PlantVillage dataset. Kaya and Gürsoy (Kaya & 

Gürsoy, 2023) used the MHA operation in the DenseNet-121 CNN architecture to 

identify plant diseases and achieved 98.17% accuracy on the PlantVillage dataset. 

Due to the powerful capabilities of the ViT model in image classification, Thai et al. 

(Thai, Tran-Van, & Le, 2021) applied the ViT model to identify four types of diseases 

in the cassava field. They observed that the ViT model outperformed other standard 

CNN architectures like EfficientNet and ResNet-50 by giving 1% higher accuracy. 

Another work that utilized the ViT model for plant disease detection was done by Wu 

et al. (Wu, Sun, & Huang, 2021). They used the ViT model and a novel multi-

granularity feature extraction module to identify ten types of tomato plant diseases. As 

per their paper, the proposed approach outperformed others by achieving 2% higher 

accuracy. In research work done by Lu et al. (Lu, et al., 2022), a novel ghost-

convolutional Transformer model was proposed to detect diseases in grape plants, and 
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this model attained 98.14% accuracy in identifying eleven diseases of grape plants. 

Some recent studies have combined the ViT and CNN models to solve various 

computer vision problems. Si et al. (Si, et al., 2022) designed an Inception-Transformer 

model for image classification and segmentation tasks. They evaluated their model on 

the ImageNet and COCO datasets and found that it surpassed other DL models.  

Similarly, Bana et al. (Bana, Loya, & Kulkarni, 2022) designed a GAN that utilized the 

ViT model and Inception module for image colorization. Another research work done 

by Zhang et al. (Zhang, Wa, Zhang, & Lv, 2022) combined the goodness of ViT and 

CNN models to design a novel Tranvolution model to diagnose plant diseases 

automatically. They evaluated their model on the PlantDoc dataset and found that the 

Tranvolution model outperformed other research works present in the literature by 

achieving a 50.3% mean average precision score. Although the research works (Bana, 

Loya, & Kulkarni, 2022; Si, et al., 2022; Zhang, Wa, Zhang, & Lv, 2022) have 

combined the Inception module with the ViT model, the computationally expensive 

MLP module present in the ViT model’s encoder block has not been removed in any of 

these research works. Hence, in this chapter, the MLP module is replaced with the 

Inception module in the encoder block of the ViT model, as it is computationally 

expensive and inefficient in extracting features from images. The modified encoder 

block named “Trans-Inception block” is then utilized to design and develop a 

lightweight and improved ViT model named TrIncNet model for identifying multiple 

plant diseases from their digital leaf images. Next section of this chapter describes the 

proposed TrIncNet model. 

4.3. Proposed TrIncNet Model for Detecting Multiple 
Plant Diseases from Leaf Images 

The ViT model is a Transformer (Vaswani, et al., 2017) based DL model designed by 

(Dosovitskiy, et al., 2021) to perform image classification and segmentation tasks. This 

model comprises of multiple stacked encoder blocks, and each encoder block of the 

ViT model contains three modules: MHA, Layer Normalization, and MLP modules. 

The MHA module performs multiple self-attention operations parallelly, through which 

the model can capture global dependencies between image patches. The Layer-
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Normalization module normalizes its previous layer’s activations to improve the 

model’s stability and performance. The MLP module comprises of two densely 

connected layers that extract various features from image patches, which are further 

utilized for classifying the given images into their respective classes.  

As all layers of the MLP module are densely connected to each other, therefore, it 

requires a huge number of weight parameters to be trained, which makes the ViT model 

computationally expensive. Moreover, the MLP module is unable to capture the 

temporal and spatial features of images efficiently and effectively. Hence, a novel 

TrIncNet model has been designed and developed in this chapter, which conquers these 

drawbacks of the ViT model. 

The TrIncNet model encompasses of multiple linearly connected modified encoder 

blocks, also known as Trans-Inception blocks, in which the MLP module has been 

replaced with the Inception module. The reason for using the Inception module in place 

of the MLP module is that the Inception module performs convolution and max-pooling 

operations parallelly. Thus, it uses significantly fewer trainable weight parameters than 

the MLP module. Moreover, it can also extract various spatial and temporal features of 

images more effectively and efficiently than the MLP module, which can enhance the 

performance of the model in performing image classification task. Furthermore, each 

Trans-Inception block of the TrIncNet model is also surrounded by a skip connection, 

which makes the model much more resistant to the vanishing gradient problem. The 

architectural design of the TrIncNet model and its Trans-Inception block has been 

shown in Figure 4.1. 

Each Trans-Inception block of the TrIncNet model comprises of three modules: MHA, 

Layer Normalization, and Inception modules. Out of these three modules, two modules, 

namely MHA and Layer Normalization modules, are taken from the ViT model’s 

encoder block, and the Inception module is added to the Trans-Inception block in this 

research work. Since the MHA and Layer Normalization modules are already described 

in section 2.2.4, therefore in this chapter only the Inception module is described. 

The Inception module performs three convolutional operations with 1 × 1, 3 × 3, and 

5 × 5 filters and a 3 × 3 max-pooling operation simultaneously. Therefore, it can 

extract various spatial and temporal features of leaf images simultaneously with 
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different receptive fields. The block diagram of the Inception module has been depicted 

in Figure 4.2. As the Inception module performs convolution and max-pooling 

operations. Thus, it has various advantages over the MLP module, which are listed 

below: 

 

Figure 4.1: Architectural design of the proposed TrIncNet model 

 Spatial invariance (Shift invariance): It refers to the property of the 

convolution operation, which makes it able to recognize the object in the image 

irrespective of its position. The convolution operation holds this property 

because the convolutional filters move over the entire image. 
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 Local translation invariance: Through this property, the Inception module can 

recognize the rotated or tilted object in the image. Pooling operation of the 

Inception module helps to achieve this property. 

 Parameter sharing: In convolution operation, weight parameters are shared 

with the help of convolutional filters, and the size of these filters is much lesser 

than the image size. Hence, the total trainable parameters present in the 

Inception module are much less than those in the MLP. 

 

Figure 4.2: Block diagram of the Inception module 

In order to analyze the efficiency of the novel Trans-Inception block over the original 

encoder of the ViT model, asymptomatic analysis has been done on the number of 

weight parameters used by these blocks. Since, in the Trans-Inception block, the MLP 

module has been replaced by the Inception module, therefore, the asymptomatic 

analysis is done only between these modules. Let 𝐼 ∈ ℝெ×ே is the input to the MLP 

module of the ViT, where 𝑀 is the number of patches in one leaf image, and 𝑁 is the 

size of one embedded patch. As mentioned in (Dosovitskiy et al., 2021), the MLP 

module present in the encoder block of the ViT model contains two fully connected 

layers having output sizes 2𝑁 and 𝑁, respectively. Hence, the total number of weight 

parameters used by the MLP module for one patch of leaf image is 𝒪(2𝑁 × 𝑁 +

 𝑁 × 2𝑁) ⇒ 𝒪(𝑁ଶ), asymptomatically. Similarly, for 𝑀 number patches, total 

𝒪(𝑀𝑁ଶ) weight parameters are used by the MLP module. On the other hand, if 𝐹 is 

the maximum number of filters used by any convolution operation of the Inception 

module, then it requires 𝒪(max(𝑀ଶ, 𝐹ଶ)) weight parameters asymptomatically 
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(calculated in Appendix A). The ratio 𝑟ெூ between the number of trainable weight 

parameters used by MLP and Inception modules can be computed as per equation 4.1, 

where 𝑋 = max(𝑀, 𝐹, 𝑁). 

𝑟ெூ =
𝒪(𝑀𝑁ଶ)

𝒪(max(𝑀ଶ, 𝐹ଶ))
≤

𝒪(𝑋ଷ)

𝒪(𝑋ଶ)
= 𝒪(𝑋) (4.1) 

The above analysis shows that the proposed Trans-Inception block requires 𝒪(𝑋) times 

fewer weight parameters to train than the ViT model’s encoder block. Furthermore, 

lesser weight parameters used by any model imply that it would require less training 

time and inference time. Hence, the TrIncNet model needs a smaller amount of training 

time and inference time than the ViT model. Next subsection discusses the details of 

various experiments conducted to evaluate the effectiveness of the proposed TrIncNet 

model in automatic plant disease detection. 

4.4. Experimental Study and Results 

The Nvidia DGX Server, which has an Intel® Xeon® CPU with 528 GB RAM and an 

Nvidia Tesla V100-SXM2 32 GB Graphic Card, is used to conduct the experiments of 

research work presented in this chapter. Python programming language is used to write 

the scripts for the experiments; however, any programming language can be used for 

experimentation. 

The TrIncNet model’s performance is compared with the ViT model (Dosovitskiy, et 

al., 2021) and six state-of-the-art CNN architectures: VGG-19 (Simonyan & Zisserman, 

2015), GoogLeNet (Szegedy, et al., 2015), ResNet-50 (He, Zhang, Ren, & Sun, 2016), 

Xception (Chollet F. , 2017), InceptionV3 (Szegedy, Vanhoucke, Ioffe, Shlens, & 

Wojna, 2016), MobileNet (Howard, et al., 2017). The Keras Python library (Chollet F. 

, 2015) embedded in Tensorflow 2.6.0 has been utilized to develop the TrIncNet and 

ViT models along with six state-of-the-art CNN architectures. Furthermore, the LIME 

API version 0.2.0.1 has been used to generate human interpretable visual explanations 

for the predictions of the proposed TrIncNet model. 

This section is divided into three subsections. Subsection 4.4.1 provides the details of 

datasets that have been utilized for training and evaluating the proposed model and 
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other counterparts. Subsection 4.4.2 provides the best values of different 

hyperparameters of the proposed TrIncNet model, and subsection 4.4.3 discusses 

various experimental results obtained from experimentation. 

4.4.1 Dataset Description 

Experimentation of the research work presented in this chapter has been conducted on 

two plant disease detection datasets. First dataset encompasses of leaf images of Maize 

plants captured from agricultural fields having complex backgrounds. Second dataset 

is the PlantVillage dataset, which is used as a benchmark dataset for plant disease 

detection. These datasets are described below: 

1. Maize dataset: The Maize dataset contains 13,971 leaf images, which were 

captured from multiple agricultural fields of the Indian Institute of Maize Research, 

Ludhiana, India. The images are captured non-invasively by maintaining a 25-40 

cm distance from the camera device to the affected part of the plant and focused on 

the top/front view of symptomatic parts of the plant. In this dataset, leaf images of 

three diseases, i.e., MLB, Banded Leaf and Sheath Blight (BLSB), and Turcicum 

Leaf Blight (TLB), are present along with the healthy leaf images. Few 

representative leaf images from each class of the dataset are shown in Figure 4.3. 

 

Figure 4.3: Leaf images from each class of the Maize dataset 

2. PlantVillage Dataset: It is a benchmark dataset used to measure the performance 

of any ML or DL model for automatically recognizing diseases in plants (Hughes, 

Salathé, & Mohanty, 2015). This dataset contains 54,503 leaf images of fourteen 
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plant species categorized into 38 classes. Few representative leaf images from each 

class of the dataset are shown in Figure 4.4. 

 

Figure 4.4: Leaf images from each class of the PlantVillage dataset 

Since the leaf images present in the Maize dataset are fewer in number and during 

model training, it can cause model overfitting. Therefore, in order to tackle this 

problem, the size of the Maize dataset is artificially increased via data augmentation. 

Data augmentation is a process that increases the dataset’s size by applying various 

image processing techniques like rotation, flipping, etc., (Bedi, Gole, & Agarwal, 

2021). After augmentation, the Maize dataset has 100000 leaf images. 

The leaf images of both datasets are randomly split into the training, validation, and test 

subsets as per the 70:15:15 ratio using the scikit-learn library of Python (Pedregosa, 

Varoquaux, Gramfort, & V., 2011). The training subset’s leaf images are utilized to 
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train the models, and the validation subset is used to adjust the values of 

hyperparameters so that the best-performing model can be achieved. Finally, the test 

subset is utilized to measure the TrIncNet model’s effectiveness on unseen leaf images. 

4.4.2 Hyperparameter Selection 

As already discussed, that the performance of the proposed model has been compared 

with ViT and six other state-of-the-art CNN models. These models are trained for 500 

epochs and 32 batch size using the Adam optimizer (Kingma & Ba, 2014) to minimize 

the categorical cross-entropy loss between the logits and actual labels of leaf images. 

Early stopping with patience value 20 is used to prevent model overfitting., i.e., if 

validation accuracy is not improved for twenty consecutive iterations, then model 

training would stop. 

As the TrIncNet model is designed by replacing the MLP model with the Inception 

module in the encoder block of the ViT model. Therefore, in order to examine the effect 

of this replacement on the number of weight parameters and performance, ViT and 

TrIncNet models are implemented using the hyperparameters given in Table 4.1 and 

Table 4.3, respectively. These values for different hyperparameters of the ViT and 

TrIncNet models have been derived via extensive experimentation. 

Table 4.1: Values of hyperparameters for the ViT model’s implementation 

Hyperparameter Value 

Image size 256 × 256 

Patch size (𝑝 × 𝑝) 16 × 16 

Size of Embedded Patch (𝑁) 256 

Number of Encoder blocks 2 

Number of Heads (𝑚) 12 

Activation function 

SoftMax (Output Layer) 

ReLu (Hidden Layers) 

Layer_normalization_rate (epsilon) 10ି଺ 
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The layer-wise implementation details of ViT and TrIncNet models have been tabulated 

in Table 4.2 and Table 4.4, respectively. 

Table 4.2: Layer-wise implementation details of the ViT model 

Layer 

No. 

Layer Name Input shape Connected to Output shape Parameters 

1 Input layer 256 × 256 × 3 - 256 × 256 × 3 0 

2 Patches 256 × 256 × 3 Input layer 256 × 768 0 

3 Patch Encoder 256 × 768 Patches 256 × 256 262400 

4 Layer 

Normalization #1 

256 × 256 Patch Encoder 256 × 256 512 

5 Multi-Head 

Attention #1 

256 × 256 Layer 

Normalization #1 

256 × 256 3155200 

6 Add #1 256 × 256, 

 

256 × 256 

Multi-Head 

attention #1 

Patch Encoder 

256 × 256 0 

7 Layer 

Normalization #2 

256 × 256 Add #1 256 × 256 512 

8 

M
L

P
 m

od
u

le
 #

1 Dense #1 𝟐𝟓𝟔 × 𝟐𝟓𝟔 Layer 

Normalization #2 

𝟐𝟓𝟔 × 𝟓𝟏𝟐 131584 

Dense #2 𝟐𝟓𝟔 × 𝟓𝟏𝟐 Dense #1 𝟐𝟓𝟔 × 𝟐𝟓𝟔 131328 

9 Add #2 256 × 256, 

256 × 256 

Dense #2, 

Add #1 

256 × 256 0 

10 Add #3 256 × 256, 

256 × 256 

Add #2,  

Patch Encoder 

256 × 256 0 
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Layer 

No. 

Layer Name Input shape Connected to Output shape Parameters 

11 Layer 

Normalization #3 

256 × 256 Add #3 256 × 256 512 

12 Multi-Head 

attention #2 

256 × 256 Layer 

Normalization #3 

256 × 256 3155200 

13 Add #4 256 × 256 

 

256 × 256 

Multi-Head 

attention #2 

Add #3 

256 × 256 0 

14 Layer 

Normalization #4 

256 × 256 Add #4 

 

256 × 256 512 

15 

M
L

P
 m

od
u

le
 #

2 Dense #1 𝟐𝟓𝟔 × 𝟐𝟓𝟔 Layer 

Normalization #4 

𝟐𝟓𝟔 × 𝟓𝟏𝟐 131584 

Dense #2 𝟐𝟓𝟔 × 𝟓𝟏𝟐 Dense #3 𝟐𝟓𝟔 × 𝟐𝟓𝟔 131328 

16 Add #5 256 × 256 

256 × 256 

Dense #4 

Add #4 

256 × 256 0 

17 Global Average 

Pooling2D #1 

256 × 256 Add #5 256 0 

18 Dense #5 256 Global Average 

Pooling2D #1 

64 16448 

19 Dense #6 

(Output layer) 

64 Dense #5 4 (for Maize 

dataset) 

38 (for Plant-

Village dataset)  

262 

2470 

Total weight parameters 
7117382 (for Maize dataset) 

7119590 (for PlantVillage dataset) 
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Table 4.3: Values of hyperparameters for the proposed TrIncNet model’s implementation 

Hyperparameter Value 

Image size 256 × 256 

Patch size (𝑝 × 𝑝) 16 × 16 

Size of Embedded Patch (𝑁) 256 

Number of Encoder blocks 2 

Number of Heads (𝑚) 12 

Activation function 

SoftMax (Output Layer) 

ReLu (Hidden Layers) 

Layer_normalization_rate (epsilon) 10ି଺ 

 
 

Table 4.4: Layer-wise implementation details of the proposed TrIncNet model 

Layer 

No. 

Layer Name Input shape Connected to Output shape Parameters 

1 Input layer 256 × 256 × 3 - 256 × 256 × 3 0 

2 Patches 256 × 256 × 3 Input layer 256 × 768 0 

3 Patch Encoder 256 × 768 Patches 256 × 256 262400 

4 Layer 

Normalization #1 

256 × 256 Patch Encoder 256 × 256 512 

5 Multi-Head 

Attention #1 

256 × 256 Layer 

Normalization #1 

256 × 256 3155200 

6 Add #1 256 × 256, 

 

256 × 256 

Multi-Head 

attention #1 

Patch Encoder 

256 × 256 0 
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Layer 

No. 

Layer Name Input shape Connected to Output shape Parameters 

7 Layer 

Normalization #2 

256 × 256 Add #1 256 × 256 512 

8 

In
ce

p
ti

on
 M

od
ul

e 
#1

 

Reshape #1 𝟐𝟓𝟔 × 𝟐𝟓𝟔 Layer 

Normalization #2 

𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 0 

Conv2D #1 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #1 𝟏𝟔 × 𝟏𝟔 × 𝟗𝟔 24672 

Conv2D #2 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #1 𝟏𝟔 × 𝟏𝟔 × 𝟏𝟔 4112 

Conv2D #3 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #1 𝟏𝟔 × 𝟏𝟔 × 𝟔𝟒 16448 

MaxPooling2D 

#1 

𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #1 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 0 

Conv2D #4 𝟏𝟔 × 𝟏𝟔 × 𝟗𝟔 Conv2D #1 𝟏𝟔 × 𝟏𝟔 × 𝟏𝟐𝟖 110720 

Conv2D #5 𝟏𝟔 × 𝟏𝟔 × 𝟏𝟔 Conv2D #2 𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 12832 

Conv2D #6 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 MaxPooling2D #1 𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 8224 

Concatenate #1 𝟏𝟔 × 𝟏𝟔 × 𝟔𝟒 

𝟏𝟔 × 𝟏𝟔 × 𝟏𝟐𝟖 

𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 

𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 

Conv2D #3 

Conv2D #4 

Conv2D #5 

Conv2D #6 

𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 0 

Reshape #2 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Concatenate #1 𝟐𝟓𝟔 × 𝟐𝟓𝟔 0 

9 Add #2 256 × 256, 

256 × 256 

Reshape #2, 

Add #1 

256 × 256 0 

10 Add #3 256 × 256, 

256 × 256 

Add #2,  

Patch Encoder 

256 × 256 0 

11 Layer 

Normalization #3 

256 × 256 Add #3 256 × 256 512 
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Layer 

No. 

Layer Name Input shape Connected to Output shape Parameters 

12 Multi-Head 

attention #2 

256 × 256 
Layer 

Normalization #3 
256 × 256 3155200 

13 Add #4 256 × 256 

 

256 × 256 

Multi-Head 

attention #2 

Add #3 

256 × 256 0 

14 
Layer 

Normalization #4 
256 × 256 Add #4 256 × 256 512 

15 

In
ce

p
ti

on
 M

od
ul

e 
#2

 

Reshape #3 𝟐𝟓𝟔 × 𝟐𝟓𝟔 
Layer 

Normalization #4 
𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 0 

Conv2D #7 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #3 𝟏𝟔 × 𝟏𝟔 × 𝟗𝟔 24672 

Conv2D #8 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #3 𝟏𝟔 × 𝟏𝟔 × 𝟏𝟔 4112 

Conv2D #9 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #3 𝟏𝟔 × 𝟏𝟔 × 𝟔𝟒 16448 

MaxPooling2D 

#2 
𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Reshape #3 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 0 

Conv2D #10 𝟏𝟔 × 𝟏𝟔 × 𝟗𝟔 Conv2D #7 𝟏𝟔 × 𝟏𝟔 × 𝟏𝟐𝟖 110720 

Conv2D #11 𝟏𝟔 × 𝟏𝟔 × 𝟏𝟔 Conv2D #8 𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 12832 

Conv2D #12 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 MaxPooling2D #2 𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 8224 

Concatenate #2 𝟏𝟔 × 𝟏𝟔 × 𝟔𝟒 

𝟏𝟔 × 𝟏𝟔 × 𝟏𝟐𝟖 

𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 

𝟏𝟔 × 𝟏𝟔 × 𝟑𝟐 

Conv2D #9 

Conv2D #10 

Conv2D #11 

Conv2D #12 

𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 0 

Reshape #4 𝟏𝟔 × 𝟏𝟔 × 𝟐𝟓𝟔 Concatenate #2 𝟐𝟓𝟔 × 𝟐𝟓𝟔 0 

16 Add #5 256 × 256 

256 × 256 

Dense #4 

Add #4 

256 × 256 0 



Lightweight and Few-Shot Image-Based Plant Disease Diagnosis and Remedy Recommender 
System 

80 

Layer 

No. 

Layer Name Input shape Connected to Output shape Parameters 

17 Global Average 

Pooling2D #1 

256 × 256 Add #5 256 0 

18 Dense #5 256 Global Average 

Pooling2D #1 

64 16448 

19 Dense #6 (Output 

layer) 

64 Dense #5 4 (for Maize 

dataset) 

38 (for Plant-

Village dataset)  

262 

2470 

Total weight parameters 
6945574 (for Maize dataset) 

6947782 (for PlantVillage dataset) 

 

It can be perceived from Table 4.2 and Table 4.4 that the Inception module present in 

the TrIncNet model has used 32.67% fewer weight parameters compared to the MLP 

module present in the ViT model. This results in a 2.41% overall decrement in weight 

parameters from the ViT model to the TrIncNet model for both datasets. The results 

obtained during the experimentation of this research work are given in the next section. 

4.4.3. Results and Discussion 

The proposed TrIncNet model was trained and evaluated on two plant disease detection 

datasets, viz: Maize and PlantVillage datasets. Performance of the proposed model was 

evaluated on the validation and test subsets of both the datasets, and comparative 

analysis was done with the existing ViT model and six state-of-the-art CNN 

architectures: VGG-19, GoogLeNet, ResNet-50, Xception, InceptionV3, and 

MobileNet. In this section, first, the results obtained on the Maize dataset are discussed, 

followed by discussion on the results obtained from the PlantVillage dataset. 

A. Results obtained on Maize Dataset 

The plot of validation accuracy and validation loss of the TrIncNet model, along with 

the ViT model and six state-of-the-art CNN architectures for the Maize dataset, has 
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been depicted in Figure 4.5. and 4.6, respectively. It can be observed from these figures 

that the proposed TrIncNet model attained the maximum validation accuracy, i.e., 

97.0%. Among the other six DL models, the GoogLeNet model attained the second 

finest results for both validation accuracy and validation loss. Moreover, Xception and 

InceptionV3 models have achieved comparable accuracies, i.e., 90.38% and 90.23%, 

respectively. Other DL models that are used for comparison have attained validation 

accuracies in the range of 73.18% to 91.78%. Same trend can also be observed from 

Figure 4.6 for the validation loss. 

 

Figure 4.5: Plot of validation accuracies of the TrIncNet model along with the ViT model 
and the six other state-of-the-art CNN architectures for the Maize dataset 

 

Figure 4.6: Plot of validation losses of the TrIncNet model along with the ViT model and 
the six other state-of-the-art CNN architectures for the Maize dataset 
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To study the efficacy of the TrIncNet model more thoroughly, accuracy, precision, 

recall, and f1-measure are also computed for the TrIncNet model along with the ViT 

model and six state-of-the-art CNN architectures on the Maize dataset’s test subset. 

These results are given in Figure 4.7. It can be observed from Figure 4.7 that the 

TrIncNet model achieved the best results for each of the above-mentioned metrics, i.e., 

96.93% accuracy, 96.98% precision, 96.83% recall, and 96.9% f1-measure on the 

Maize dataset. The Xception and InceptionV3 models have attained comparable results, 

and ResNet-50 has minimum values for the aforementioned metrics. Moreover, 

GoogLeNet, ViT, MobileNet, and VGG-19 models achieved 95.72%, 91.55%, 91.64%, 

and 84.46% f1-measure, respectively. 

 

Figure 4.7: Comparison of accuracy, precision, recall, and f1-measure attained by the 
proposed TrIncNet model along with the ViT model and six state-of-the-art CNN 
architectures for the Maize dataset 

The number of trainable weight parameters utilized by the TrIncNet model, along with 

the ViT model and six state-of-the-art CNN architectures trained on the Maize dataset, 

have been compared in Figure 4.8. It is observed from Figure 4.8 that Xception, VGG-

19, and InceptionV3 models require a comparable number of trainable parameters, i.e., 

20.03 million, 20.87 million, and 21.81 million. Meanwhile, ResNet-50 uses 23.60 

million, and the GoogLeNet model uses 8.21 million trainable weight parameters. It 

can also be observed from Figure 4.8 that the TrIncNet model requires 6.95 million 

trainable weight parameters, which is 2.41% less than the ViT model, which requires 

7.12 million weight parameters. Although the MobileNet model has minimum trainable 
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weight parameters, i.e., 3.23 million, but it did not perform well as compared to the 

proposed TrIncNet model. 

 

Figure 4.8: Comparison of the number of trainable weight parameters used by the 
TrIncNet along with the ViT model and six state-of-the-art CNN architectures trained on 
the Maize dataset 

The TrIncNet model’s performance on the Maize dataset has been compared in Table 

4.5 with the research work done by (Haque, et al., 2022). The reason for comparing it 

with only this research work is that the TrIncNet model is trained on the same Maize 

dataset, which was used by (Haque, et al., 2022) in their research work. 

Table 4.5: Comparison of the TrIncNet model’s performance with a recent research work 
present in the literature for the identification of Maize plant diseases 

Research Work Techniques used Number of 

classes 

available in 

the dataset 

Accuracy Number of trainable 

weight parameters  

(In millions) 

(Haque, et al., 

2022) 

InceptionV3 with Global 

Average Pooling 

4 95.99% 21.78 

Proposed Work TrIncNet model 4 96.93% 6.95 

 

It can be perceived from Table 4.5 that the TrIncNet model achieved approximately 

one percent higher testing accuracy than the research work done by (Haque, et al., 2022) 

in detecting three diseases (MLB, TLB, and BLSB) of Maize plants under real-field 

conditions. Moreover, the TrIncNet model requires approximately 68.1% lesser 
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trainable weight parameters than the research work done by (Haque, et al., 2022). In 

the following subsection, results obtained on the PlantVillage dataset are discussed. 

B. Results obtained on PlantVillage Dataset 

The trend of validation loss and validation accuracy with respect to the number of 

epochs has been analyzed to evaluate the performance of the TrIncNet model with the 

ViT model and six state-of-the-art CNN architectures on the PlantVillage dataset. This 

trend of validation accuracy and validation loss have been depicted in Figures 4.9 and 

4.10, respectively. 

 

Figure 4.9: Plot of validation accuracies of the TrIncNet model along with the ViT model 
and the six other state-of-the-art CNN architectures for the PlantVillage dataset 

It has been observed by analyzing the plots given in these figures that the Xception, 

GoogLeNet, and InceptionV3 models have attained comparable accuracies, i.e., 

99.76%, 99.78%, and 99.28%. Furthermore, other DL models used for comparison have 

attained validation accuracies in the range of 92% to 97%. It can also be observed from 

these figures that the proposed TrIncNet model achieved the highest validation 

accuracy and lowest validation loss, i.e., 99.95%. Same trend can also be followed in 

Figure 4.10 for the validation losses of the proposed TrIncNet model and other 

counterparts. 
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Figure 4.10: Plot of validation losses of the TrIncNet model along with the ViT model and 
the six other state-of-the-art CNN architectures for the PlantVillage dataset 

 

 

Figure 4.11: Comparison of accuracy, precision, recall, and f1-measure attained by the 
proposed TrIncNet model along with the ViT model and six state-of-the-art CNN 
architectures for the PlantVillage dataset 

The performance of TrIncNet model, along with the ViT model and six state-of-the-art 

CNN architectures, has been analyzed more thoroughly by computing accuracy, 

precision, recall, and f1-measure on the test subset of the PlantVillage dataset for all 

models. These results have been compared in Figure 4.11, and it can be observed from 

this figure that the proposed TrIncNet model has achieved 99.93% accuracy, 99.92% 

precision, 99.91% recall, and 99.91% f1-measure. Whereas GoogLeNet, VGG-19, ViT, 
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and MobileNet models achieved 97.22%, 96.96%, 96.68%, and 97.68% f1-measure, 

respectively.  

In order to compare the lightweight nature of the TrIncNet model and ViT model along 

with six state-of-the-art CNN architectures, the trainable weight parameters of these 

models have been compared in Figure 4.12 for the PlantVillage dataset. It can be seen 

by analyzing the line chart given in Figure 4.12 that the ResNet-50 and GoogLeNet 

models use 8.24 million and 23.67 million trainable parameters, respectively. 

Meanwhile, the VGG-19, Xception, and InceptionV3 models require comparable 

weight parameters. Although it can also be observed from Figure 4.12 that the 

MobileNet model requires minimum trainable weight parameters, i.e., 3.27 million, it 

did not perform well as compared to the proposed TrIncNet model. 

 

Figure 4.12 Comparison of the number of trainable weight parameters used by the 
TrIncNet along with the ViT model and six state-of-the-art CNN architectures 
trained on the PlantVillage dataset 

The performance of the TrIncNet model on the PlantVillage dataset has also been 

compared in Table 4.6 with several recent research works present in the literature in 

which the PlantVillage dataset is used for model training. It can be observed from Table 

4.6 that the proposed model has attained state-of-the-art results by using a significantly 

lesser number of trainable weight parameters on the PlantVillage dataset as compared 

to other studies present in the literature. 
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Table 4.6: Comparison of the TrIncNet model’s performance with several recent studies 
present in the literature on the PlantVillage dataset 

Research Work Techniques 

used 

Number of classes 

available in the 

dataset 

Accuracy Number of trainable 

weight parameters  

(In millions) 

(Kaya & Gürsoy, 

2023) 

Fused-

DenseNet-121 

38 98.17% 8.13 

(Ahmad, Gamal, & 

Saraswat, 2023) 

DenseNet-169 38 99.5% 12.70 

(Atila, Uçar, 

Akyol, & Uçar, 

2021) 

EfficientNet-B5 38 99.91% 30.56 

Proposed Work TrIncNet 

model 

38 99.93% 6.95 

 

Experimental results revealed that the TrIncNet model attained higher testing accuracy 

than the ViT model. This trend of the results can be argued on the fact that in the Trans-

Inception block of the proposed TrIncNet model, the MLP module is replaced with the 

Inception module, which can effectively and efficiently extract various spatial and 

temporal features from leaf images. This replacement also reduced the number of 

trainable weight parameters used by the proposed TrIncNet model, as the Inception 

module performs convolution and max-pooling operations, which require fewer 

trainable weight parameters than the fully connected layers present in the MLP module. 

It can be concluded from the results obtained on both data datasets that the proposed 

model has achieved higher testing accuracy with a significantly lesser number of 

trainable weight parameters than the research work done by (Atila, Uçar, Akyol, & 

Uçar, 2021; Haque, et al., 2022; Ahmad, Gamal, & Saraswat, 2023; Kaya & Gürsoy, 

2023). In order to visualize the feature extraction abilities of the MLP module of the 

ViT model’s encoder block and the Inception module of the Trans-Inception block, 

their extracted features are plotted in Figure 4.13 and Figure 4.14, respectively.  
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Figure 4.13: Visual representation of features extracted by MLP module present in the 
ViT model’s encoder block 

It can be seen from Figure 4.13 that the MLP module present in the ViT model’s 

encoder block is able to capture various features of leaf images. However, these features 

are very limited (as many feature maps shown in Figure 4.13 are empty) and not very 

rich in quality because the MLP module has not effectively captured the various spatial 

and temporal features of leaf images. 

On the other hand, the Inception module performs three convolution operations with 

1 × 1, 3 × 3, and 5 × 5 filters and a 3 × 3 max-pooling operation simultaneously. The 

features extracted by individual operations of the Inception module are represented in 

Figure 4.14 (a-d), and the concatenation of features extracted by all four operations of 

the Inception module is shown in Figure 4.14 (e). It can be observed from Figure 4.14 

(e) that the features captured by the Inception module are much richer in quality as 

compared to the MLP module. Moreover, the Inception module has captured more 

number of features than the MLP module. 
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Figure 4.14: Visual representation of features extracted by the Inception module present 
in the Trans-Inception block. (a) Features extracted by 𝟏 × 𝟏 convolution operation. (b) 
Features extracted by 3× 𝟑 convolution operation. (c) Features extracted by 𝟓 × 𝟓 
convolution operation. (d) Features extracted by 𝟑 × 𝟑 max-pooling operation. (e) 
Concatenation of all features extracted by 𝟏 × 𝟏, 𝟑 × 𝟑, 𝟓 × 𝟓 convolution operations and 
𝟑 × 𝟑 max-pooling operation 
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Due to the complex and deep nested structure of DL models, these models are 

considered as black-box. Hence, in order to enhance end-users’ trust in the predictions 

of the proposed TrIncNet model, human interpretable visual explanations are also 

generated with the help of LIME framework (Ribeiro, Singh, & Guestrin, 2016). This 

framework provides sample-wise (local) explanations which are human-understandable 

(interpretable). Since the LIME framework can provide explanations for the predictions 

of any ML or DL model, therefore this framework is considered as model-agnostic 

(does not dependent on the model) in nature. It highlights the top 𝑛 super pixels 

(collection of neighboring pixels), which favored the predicted class. The value of 𝑛  

can be changed as per user-choice. These visual explanations are easy to understand 

and provide direct insight into the decision-making process of any ML or DL model. 

The explanations for the leaf images of Maize and PlantVillage datasets obtained from 

the LIME framework are shown in Figure 4.15. 

 

Figure 4.15: Human interpretable visual explanations generated using the LIME 
framework for the leaf images of Maize and PlantVillage datasets 
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It can be seen from Figure 4.15 that for diseased leaf images of both the Maize and 

PlantVillage datasets, the LIME framework has highlighted the diseased lesions of leaf 

images, and thereby the prediction of the TrIncNet model is validated. On the other 

hand, the LIME framework highlights the green (healthy) areas of the leaf image when 

the model predicts the leaf image as healthy. 

Conclusively, it can be said that the TrIncNet model proposed in this chapter has the 

potential to identify multiple plant diseases efficiently and effectively via their digital 

leaf images captured either from the lab or agricultural fields with high accuracy. 

Furthermore, the visual explanations of the proposed TrIncNet model obtained from 

the LIME framework clearly highlight the diseased areas of leaf images, which 

enhances the trust of farmers and agricultural scientists in the predictions of the 

proposed model. Hence, due to the high performance and lightweight nature of the 

proposed TrIncNet model, it can be integrated with different IoT devices to assist 

farmers in identifying plant diseases at the earliest possible stage. 

4.5. Chapter Summary 

In this chapter, a lightweight and improved ViT model named TrIncNet has been 

proposed for identifying multiple plant diseases from their digital leaf images. This 

model comprised of multiple stacked Trans-Inception blocks, which were designed by 

replacing the MLP module with the Inception module in the original ViT model’s 

encoder block. Moreover, in the TrIncNet model, each Trans-Inception block was 

surrounded by a skip connection, which made the proposed model much more resistant 

to the vanishing gradient problem. During the experimental study, it was found that the 

TrIncNet model achieved state-of-the-art results as compared to other counterparts 

despite of utilizing minimum trainable weight parameters. 

Although the proposed TrIncNet model can diagnose multiple plant diseases very 

effectively and efficiently from leaf images. However, in order to recommend the 

remedy for diagnosed disease, disease severity estimation is also necessary. Hence, the 

next chapter of this thesis deals with designing and developing an effective and efficient 

DL model to precisely estimate the severity of the identified disease. 
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5. Estimating Plant Disease Severity 
using Convolutional Auto Encoder 
and Few-Shot Learning 

This chapter presents a lightweight Plant Disease Severity Estimation framework 

named “PDSE-Lite” based on CAE and FSL for estimating the disease severity in 

plants. By leveraging FSL, the proposed framework requires only a few annotated 

instances for training, which significantly reduces the human efforts required for data 

annotation. 

5.1. Introduction 
Early stage plant disease detection with severity estimation is still a major challenge in 

front of agrarian researchers as it hampers both food grain quality and quantity. 

Moreover, plant disease severity estimation is also necessary for tracking plant diseases 

and treatment planning. Conventionally, farmers and agricultural scientists estimate the 

severity of plant diseases with their expertise by manually examining the plant leaves. 

However, nowadays, the severity of plant diseases is estimated by applying different 

ML and DL techniques on digital leaf images. 

In computer vision, the problem of plant disease severity estimation via digital leaf 

images can be conceptualized in two ways. In the first scenario, disease severity is 

estimated by classifying the plant leaf image with the help of any ML or DL models 

into various severity level classes like low, moderate, or severe. In literature, this 

approach of severity estimation has been utilized by various researchers (Wang, Sun, 

& Wang, 2017; Haque, et al., 2022). However, classifying leaf images into predefined 

severity classes instead of estimating disease severity by segmenting infected regions 

has few drawbacks, such as subjective interpretation and the inability to track disease 

changes over time.  

In the second scenario, the plant disease severity estimation is done by segmenting the 

diseased regions of leaf images and then calculating the percentage of diseased pixels 

out of total leaf pixels, i.e., sum of healthy and diseased pixels. The research works 

based on this approach is broadly divided into three groups. First group of research 
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works utilizes various Digital Image Processing (DIP) techniques like image 

thresholding, Otsu segmentation, etc., to segment out the diseased area from leaf images 

(Bock, Poole, Parker, & Gottwald, 2010; Patil & Bodhe, 2011; Barbedo, 2014; Dhingra, 

Kumar, & Joshi, 2018). Although these DIP methods can segment the diseased areas 

from leaf images, but their performance significantly decreases when applied to leaf 

images captured from the real field with complex backgrounds.  

Second category of research works segments diseased areas from plant leaf images by 

using different ML techniques like Fuzzy C-Means clustering, K-Means clustering, 

etc., (Biswas, Jagyasi, Singh, & Lal, 2014; Mwebaze & Owomugisha, 2016; Sethy, 

Negi, Barpanda, Behera, & Rath, 2018). Though the results achieved via ML techniques 

are much better than the DIP techniques, but they suffer from some major drawbacks. 

K-means clustering is sensitive to hyperparameter initialization, leading to variable 

segmentation outcomes. Furthermore, Fuzzy C-Means clustering faces high 

computational complexity and dependence on the fuzziness parameter, requiring 

careful parameter selection for accurate results.  

The third type of research works have leveraged various DL techniques to segment the 

diseased areas from leaf images for estimating plant disease severity (Chen, et al., 2021; 

Wang, et al., 2021; Pal & Kumar, 2023). Nevertheless, training these models requires 

a large amount of annotated leaf images for precise segmentation of disease areas from 

leaf images, and in the real world, creating such datasets is a very laborious task. 

Furthermore, training any DL model with a limited amount of annotated leaf images 

can lead to model overfitting. 

In order to conquer the problem of limited data availability, various researchers have 

primarily used two types of data augmentation techniques, namely, Digital Image 

Processing techniques (Haque, et al., 2022; Chohan, Khan, Chohan, Katpar, & Mahar, 

2020) and Generative Adversarial Networks (Abbas, Jain, Gour, & Vankudothu, 2021; 

Zhang, Wa, Zhang, & Lv, 2022). Though these data augmentation techniques can 

generate an adequate amount of leaf images along with their annotations, but the 

performance of any model trained on these images drastically decreases when deployed 

in the real world.  
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Therefore, the advantages of FSL, which uses few instances for training, can be 

leveraged to develop a DL model for plant disease severity estimation. The FSL 

techniques are based on Meta-Learning or Learning to Learn approaches, and these 

techniques have been described earlier in section 2.3. Various researchers have also 

leveraged FSL in the agricultural sector for plant disease detection and severity 

estimation (Argüeso, et al., 2020; Liang X. , 2021; Tassis & Krohling, 2022). 

However, most of these works estimate plant disease severity by classifying the leaf 

image into one of the several predefined severity level classes. To the best of our 

knowledge, none of the existing research works have estimated the severity level of 

plant diseases by segmenting the diseased areas with the help of few training instances. 

Hence, in order to bridge this research gap, a lightweight framework named “PDSE-

Lite” based on CAE and FSL is proposed in this chapter for plant disease detection and 

severity estimation. 

Rest of this chapter comprises of four sections. Section 5.2 delves into the pertinent 

literature related to the research work presented in this chapter. Section 5.3 describes 

the proposed PDSE-Lite framework. Section 5.4 provides the details of 

experimentation, and the results obtained from experimentation. Lastly, section 5.5 

summarizes the chapter. 

5.2. Related Work 
Numerous research works have been done in recent years for automatic plant disease 

severity estimation by utilizing various ML or DL techniques on digital images of plant 

leaves. Some of these existing research works are discussed in this section. 

In the literature, researchers have estimated the severity of plant disease using two 

approaches. In the first approach, plant disease severity is estimated by classifying the 

leaf images into one of the predefined severity level classes. These classes are defined 

with the assistance of plant pathologists. Most of the research works available in the 

literature are based on this approach have leveraged various predefined CNN models 

to classify leaf images into various predefined severity level classes. Liang et al. (Liang, 

et al., 2019) built a PD2SE-Net CNN model by combining ShuffleNetV2 and residual 

network units for plant disease detection and severity estimation. They trained their 
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proposed model on a manually annotated PlantVillage dataset (plant pathologists 

manually divided diseased leaf images into general and serious severity classes) and 

achieved 90.81% accuracy.  

Similarly, Zhao et al. (Zhao, Chen, Xu, Lei, & Zhou, 2021) also trained their proposed 

model named SEV-Net on manually annotated PlantVillage dataset for plant disease 

diagnosis with severity estimation. The SEV-Net model was built by adding Spatial and 

Channel Attention blocks in the existing ResNet-50 CNN architecture, and it achieved 

95.37% testing accuracy. Some researchers like (Haque, et al., 2022; Shu, et al., 2023; 

Dhiman, et al., 2022) trained various state-of-the-art CNN models for classifying plant 

leaf images into one of the predefined disease severity level classes on their own 

collected in-field leaf images. Verma et al. (Verma, Chug, Singh, & Singh, 2023) 

developed a disease severity estimation framework named PDS-MCNet for early and 

late blight diseases in tomato plants. They first captured digital photographs of several 

infected and healthy tomato plants. Thereafter, these captured leaf images are manually 

categorized into three severity classes, namely, Early, Middle, and Late, with the 

assistance of agricultural scientists. The MobileNetV2 CNN model was utilized in this 

research work, and it achieved 94.47% accuracy. 

Estimating plant disease severity via the first approach, i.e., classifying plant leaf 

images into predefined severity level classes, has few drawbacks, such as subjective 

interpretation and the inability to track disease changes over time. Thus, in order to 

conquer these drawbacks, some researchers tried to estimate plant disease severity by 

segmenting the infected regions of diseased leaf images. In literature, this approach was 

followed in several research works like (Wspanialy & Moussa, 2020; Wang, et al., 

2021; Ji & Wu, 2022; Divyanth, Ahmad, & Saraswat, 2023). These research works 

utilized U-Net and DeepLab-based image segmentation models for segmenting 

diseased and healthy pixels from infected leaf images to further compute disease 

severity as the percentage of diseased pixels present out of total leaf pixels, i.e., sum of 

healthy and diseased pixels. Pal and Kumar (Pal & Kumar, 2023) built a novel AgriDet 

model by using the Inception-VGG Network model along with Kohonen Learning for 

plant disease detection, and it achieved 96% validation accuracy, as claimed in the 

paper. Furthermore, the Multi-Variate-Grabcut algorithm was also utilized for 
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segmenting the diseased lesions from leaf images. Thereafter, the percentage of 

diseased pixels out of total leaf pixels was calculated to measure plant disease severity. 

Despite of high performance exhibited by aforementioned research works in 

segmenting diseased areas from leaf images, their training process requires a huge 

amount of labeled leaf images to precisely segment the disease areas from leaf images. 

However, in real-world scenarios, creating such datasets is a very challenging and 

laborious task. Additionally, when training an ML or DL model using limited labeled 

leaf images, there is a high risk of model overfitting. To address this issue, researchers 

have employed two types of data augmentation techniques, namely, DIP techniques and 

GANs. These techniques alleviate the problem by artificially generating leaf images 

with their corresponding segmentation masks. However, the performance of models 

trained on these artificially generated images significantly decreases when they are 

deployed in the real world.  

Therefore, various researchers have designed and developed various DL models by 

leveraging the advantages of FSL in which only few annotated leaf images are required 

for training the model. Pan et al. (Pan, et al., 2022) proposed a two-stage severity 

estimation framework for leaf scorch disease of strawberry plants using FSL. In the 

first phase, they utilized the faster RCNN segmentation model to segment strawberry 

leaves from the captured image, encompassing of other objects like mud, plant stems, 

etc. Afterward, they applied the Siamese Network to classify the leaf images into either 

healthy, serious scorch, or general scorch severity levels. In order to assess their 

proposed framework on unseen data, they evaluated the model’s performance on 60 

new strawberry plant leaf images. They claimed that their framework achieved 88.33% 

accuracy on these images.  

Tassis and Krohling (Tassis & Krohling, 2022) presented a case study on two FSL 

techniques, i.e., triplet networks and prototypical networks, which were applied to 

estimate disease severity in coffee plant leaves. Moreover, they reported that these FSL 

techniques achieved 93.25% accuracy in classifying coffee plant leaf images into one 

of the five severity levels: Very High, High, Low, Very Low, Healthy. Although, 

(Tassis & Krohling, 2022; Pan, et al., 2022) developed a state-of-the-art framework via 
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FSL for estimating the severity of plant diseases, but there is still a scope for 

performance improvement in the aforementioned frameworks.  

Conclusively, it can be observed from the above discussion that most of the 

aforementioned research works are focused on estimating plant disease severity via 

classifying diseased leaf images into one of the predefined severity levels. Though few 

works also focus on plant disease severity estimation via segmenting diseased areas of 

infected leaf images, but they necessitate a huge amount of annotated leaf images for 

model training so that it could generalize well on new leaf images. However, annotating 

huge number of leaf images is a very challenging and laborious task. Thus, the objective 

of the research work presented in this chapter is to design and develop a cost-effective 

framework for automatically estimating the severity of plant diseases by segmenting 

diseased areas with the help of few training samples. Hence, a novel few-shot and 

lightweight framework named “PDSE-Lite” based on CAE and FSL has been proposed 

in the research work presented in this chapter for diagnosing plant diseases 

automatically and estimating the severity of identified disease by segmenting infected 

regions of leaf images. As the proposed framework leveraged the advantages of FSL, 

and thus, it utilizes only few training samples for training. Hence, in this way, the 

proposed framework significantly reduces the human efforts required for annotating 

leaf images. Next section of this chapter describes the proposed PDSE-Lite framework. 

5.3. Proposed PDSE-Lite Framework for Plant 
Disease Severity Estimation 

This chapter proposes a few-shot and lightweight framework named “PDSE-Lite” 

based on CAE and FSL for automatic plant disease detection and severity estimation. 

The PDSE-Lite framework’s flow diagram has been given in Figure 5.1. The 

motivation to build such type of framework comes from the hypothesis that if a DL 

model (i.e., CAE) can reconstruct leaf images from original leaf images with minimal 

information loss, then leveraging its learned knowledge will enable the development of 

DL models for detecting plant diseases and segmenting disease areas from leaf images 

using limited training data.  
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Thus, in order to design the PDSE-Lite framework, first, a lightweight CAE model has 

been designed and trained to reconstruct the leaf images from original leaf images with 

minimum reconstruction loss. Thereafter, in the second stage, a few-shot image 

classification and segmentation models are built by utilizing the pre-trained layers of 

the CAE model to detect plant diseases and segment diseased areas from leaf images, 

respectively.  

The details of these models have been provided in subsections 5.3.1, 5.3.2, and 5.3.3, 

respectively. After training the few-shot image classification and segmentation models, 

these models are utilized in the testing or inference stage to detect plant diseases, 

segment diseased lesions of infected leaf images, and estimate the severity of identified 

diseases. 

5.3.1. Lightweight Convolutional Auto Encoder (CAE) 

First stage of the proposed PDSE-Lite framework focuses on learning to reconstruct the 

leaf images from original leaf images with minimum reconstruction loss, and this 

learning has been done via training a lightweight CAE model. CAE is a type of Auto 

Encoder that effectively and efficiently deals with image data as compared to other 

types of Auto Encoders (Bedi & Gole, 2021). Like other Auto Encoders, CAE also 

encompasses of one encoder block, bottleneck layer, and decoder block.  

The encoder block of CAE captures different spatial features of leaf images with the 

help of multiple convolutional and downsampling (max-pooling) layers and encodes 

them to a compressed domain representation. This compressed domain representation 

is stored in the bottleneck layer of CAE, and it comprises of all essential features that 

are further used by the decoder block of CAE to reconstruct leaf images with minimum 

reconstruction loss.  

The decoder block of CAE comprises of same number of layers as of encoder block but 

in reverse order. Moreover, upsampling layers are utilized instead of downsampling 

(max-pooling) layers in the decoder block of the CAE model. The layer-wise 

implementation details of the CAE model utilized in PDSE-Lite framework have been 

tabulated in Table 5.1, and its architectural diagram has been given in Figure 5.2. 
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Table 5.1: Implementation details of the CAE model used in the proposed PDSE-Lite 
framework 

Layer 

No. 

Layer Name Input Shape Connected to Output Shape Number of 

parameters 

1 Input Layer (256×256×3) - (256×256×3) 0 

 

2 

E
nc

od
er

 b
lo

ck
 o

f 
C

A
E

 

Conv2D #1 (256×256×3) Input Layer (256×256× 16) 448 

3 MaxPool2D #1  (256×256× 16) Conv2D #1 (128×128× 16) 0 

4 Conv2D #2 (128×128× 16) MaxPool2D #1 (128×128×8) 1160 

5 MaxPool2D #2 (128×128×8) Conv2D #2 (64×64×8) 0 

6 Conv2D #3 (64×64×8) MaxPool2D #2 (64×64×8) 584 

7 MaxPool2D #3  (64×64×8) Conv2D #3 (32×32×8) 0 

8 

B
ot

tl
en

ec
k 

la
ye

r 
of

 C
A

E
 

Conv2D #4 (32×32×8) MaxPool2D #3 (32×32×8) 584 

9 

D
ec

od
er

 b
lo

ck
 o

f 
C

A
E

 

UpSample2D #1 (32×32×8) Conv2D #4 (64×64×8) 0 

 

10 
Conv2D #5 

(64×64×8) UpSample2D #1 (64×64×8) 584 

 

11 UpSample2D #2 (64×64×8) Conv2D #5 (128×128×8) 0 

 

12 
Conv2D #6 (128×128×8) UpSample2D #2 (128×128×8) 

584 

 

13 UpSample2D #3 (128×128×8) Conv2D #6 (256×256×8) 0 

14 

O
ut

pu
t L

ay
er

 

of
 C

A
E

 

Conv2D #7  (256×256×8) UpSample2D #3 (256×256×3) 219 

Total weight parameters 4163 
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Figure 5.2: Architectural design of the CAE model used in the PDSE-Lite framework 

The CAE model’s encoder block used in this chapter comprises of three convolutional 

layers, each succeeded by a max-pooling layer that decreases the feature map’s spatial 

dimension via a factor of two. Similarly, the decoder block of the CAE model also 

encompasses of three convolutional layers, each preceded by an upsampling layer, 

which increases the feature map’s spatial dimension via a factor of two. 

The following subsection of this chapter describes the few-shot image classification 

model of the proposed PDSE-Lite framework. 

5.3.2. Few-Shot Image Classification Model for Detecting 

Diseases from Leaf Images 

During the second stage of the PDSE-Lite framework, a few-shot image classification 

model is designed and developed to identify diseases in plants by using their leaf 

images. This model encompasses of a pretrained encoder block and bottleneck layer of 

the CAE model discussed in the previous subsection. Furthermore, a classification 

block is appended ahead of the CAE’s pretrained bottleneck layer in order to fine-tune 

this model for plant disease detection. The classification block comprises of two 

convolutional layers, one max-pooling, global-average-pooling, and dense layers. The 

implementation details of this model are given in Table 5.2, and its architectural design 

is depicted in Figure 5.3. 
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Table 5.2: Implementation details of PDSE-Lite framework’s few-shot image 
classification model used for detecting diseases from leaf images 

Layer 

No. 

Layer Name InputShape Connected to Output Shape Number of 

parameters 

1 Input Layer (256×256×3) - (256×256×3) 0 

2 

L
ay

er
s 

fr
om

 th
e 

E
nc

od
er

 b
lo

ck
 o

f 
C

A
E

 Conv2D #1 (256×256×3) Input Layer (256×256× 16) 448 

3 MaxPool2D #1  (256×256× 16) Conv2D #1 (128×128× 16) 0 

4 Conv2D #2 (128×128× 16) MaxPool2D #1 (128×128×8) 1160 

5 MaxPool2D #2 (128×128×8) Conv2D #2 (64×64×8) 0 

6 Conv2D #3 (64×64×8) MaxPool2D #2 (64×64×8) 584 

7 MaxPool2D #3  (64×64×8) Conv2D #3 (32×32×8) 0 

8 

B
ot

tl
en

ec
k 

la
ye

r 
of

 C
A

E
 

Conv2D #4 (32×32×8) MaxPool2D #3 (32×32×8) 584 

9 

E
xt

ra
 L

ay
er

s 
ad

de
d 

to
 th

e 
fe

w
-s

ho
t i

m
ag

e 

cl
as

si
fi

ca
ti

on
 m

od
el

 

Conv2D #8 (32×32×8) Conv2D #4 (32×32×16) 1168 

10 MaxPool #4 (32×32×16) Conv2D #8 (16×16×16) 0 

11 Conv2D #9 (16×16×16) MaxPool #4 (16×16×32) 4640 

12 GlobalAverageP

ooling2D 

(16×16×32) Conv2D #9 32 0 

13 Dense Layer 

(SoftMax) 

32 GlobalAverage

Pooling2D 

5 165 

Total weight parameters 8749 

 

This model has been trained on few training instances, and during training the 

categorical cross-entropy loss (denoted by 𝐿𝑜𝑠𝑠஼஼ா) between predicted labels 𝑌௣௥௘ௗ and 

actual labels 𝑌௧௥௨௘ of leaf images has been minimized. The mathematical formula of 

categorical cross-entropy loss, i.e., 𝐿𝑜𝑠𝑠஼஼ா  is shown in equation 5.1, where 𝑁 
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represents the number of instances taken into account, 𝑌௣௥௘ௗ
௜  denotes the predicted label 

of 𝑖௧௛ instance, and 𝑌௧௥௨௘
௜  represents the actual label of 𝑖௧௛ instance. 

𝐿𝑜𝑠𝑠஼஼ா = −
1

𝑁
෍ 𝑌௧௥௨௘

௜ log(𝑌௣௥௘ௗ
௜ )

ே

௜ୀଵ

 (5.1) 

 

Figure 5.3: Architectural design of few-shot image classification model used for detecting 
diseases from leaf images 

Subsequent subsection describes the few-shot image segmentation model of the 

proposed PDSE-Lite framework. 

5.3.3. Few-Shot Image Segmentation Model for Segmenting 

Diseased Areas from Diseased Leaf Images 

In order to estimate the severity of detected plant disease, a few-shot image 

segmentation model has been designed and implemented for segmenting disease areas 

from leaf images. This model encompasses of pretrained CAE (described in subsection 

5.3.1) and segmentation block. In the segmentation block, first, the output features maps 

of pretrained bottleneck, Conv2D #5, and Conv2D #6 layers are upsampled by a factor 

of 8, 4, and 2, respectively. Thereafter, these up-sampled feature maps have been 

concatenated channel-wise. By this concatenation, all features extracted by different 
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convolutional layers of the CAE model’s decoder block are merged to form a combined 

feature map.  

Subsequently, this combined feature map is passed to three stacked convolutional layers 

having 12, 6, and 3 filters, respectively. The last convolutional layer, which has three 

filters, acts as an output layer that generates the segmentation mask for a given leaf 

image. Each pixel of this segmentation mask can have either of three values, i.e., 0 is 

for the background, 1 is for healthy pixels, and 2 is for diseased pixels. The layer-wise 

implementation details of this model are tabulated in Table 5.3, and its architectural 

diagram is given in Figure 5.4. 

Table 5.3: Layer-wise implementation details of the PDSE-Lite framework’s image 
segmentation model used to segment diseased areas from leaf images 

Layer 

No. 

Layer Name Input Shape Connected to Output Shape Number of 

parameters 

1 Input Layer (256×256×3) - (256×256×3) 0 

2 

L
ay

er
s 

fr
om

 th
e 

E
nc

od
er

 b
lo

ck
 o

f 
C

A
E

 Conv2D #1 (256×256×3) Input Layer (256×256× 16) 448 

3 MaxPool2D #1  (256×256× 16) Conv2D #1 (128×128× 16) 0 

4 Conv2D #2 (128×128× 16) MaxPool2D #1 (128×128×8) 1160 

5 MaxPool2D #2 (128×128×8) Conv2D #2 (64×64×8) 0 

6 Conv2D #3 (64×64×8) MaxPool2D #2 (64×64×8) 584 

7 MaxPool2D #3  (64×64×8) Conv2D #3 (32×32×8) 0 

8 

B
ot

tl
en

ec
k 

la
ye

r 
of

 C
A

E
 

Conv2D #4 (32×32×8) MaxPool2D #3 (32×32×8) 584 

9 

L
ay

er
s 

fr
om

 th
e 

D
ec

od
er

 

bl
oc

k 
of

 C
A

E
 

UpSample2D #1 (32×32×8) Conv2D #4 (64×64×8) 0 

10 Conv2D #5 (64×64×8) UpSample2D #1 (64×64×8) 584 

11 UpSample2D #2 (64×64×8) Conv2D #5 (128×128×8) 0 

12 Conv2D #6 (128×128×8) UpSample2D #2 (128×128×8) 584 
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Layer 

No. 

Layer Name Input Shape Connected to Output Shape Number of 

parameters 

13 

E
xt

ra
 L

ay
er

s 
ad

de
d 

to
 th

e 
im

ag
e 

se
gm

en
ta

ti
on

 m
od

el
 

UpSample2D #4 (32×32×8) Conv2D #4 (256×256×8) 0 

14 UpSample2D #5 (64×64×8) Conv2D #5 (256×256×8) 0 

15 UpSample2D #6 (128, 128, 8) Conv2D #6 (256×256×8) 0 

16 Concatenate  

(256×256×8)  

 

(256×256×8) 

 

(256×256×8) 

UpSample2D #4 

UpSample2D #5 

UpSample2D #6 

(256×256×24) 0 

17 Conv2D #10 (256×256×24) Concatenate (256×256×12) 2604 

18 Conv2D #11 (256×256×12) Conv2D #10 (256×256×6) 654 

19 

Conv2D #12 

(1 × 1 filter 

size) (Output 

layer) 

(256×256×6) Conv2D #11 (256, 256, 3) 21 

Total weight parameters 7223 

 

This few-shot model for segmenting infected areas from leaf images has been trained 

on few leaf images from diseased classes of the ATLDS dataset. This model also 

minimizes the sum of categorical cross-entropy loss (𝑆𝑒𝑔𝐿𝑜𝑠𝑠஼஼ா) and jaccard loss 

(𝑆𝑒𝑔𝐿𝑜𝑠𝑠௝௔௖௖௔௥ௗ) between predicted and ground truth segmentation masks during 

training. The mathematical formulas for 𝑆𝑒𝑔𝐿𝑜𝑠𝑠஼஼ா and 𝑆𝑒𝑔𝐿𝑜𝑠𝑠௝௔௖௖௔௥ௗ are given in 

equations 5.2 and 5.3, respectively. In these equations, 𝑌௣௠௔௦௞
௜  and 𝑌௚௠௔௦௞

௜  represents 

predicted and ground truth segmentation masks for 𝑖௧௛ leaf image, respectively. 

Furthermore, 𝑁 denotes the number of instances taken into consideration. 
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Figure 5.4: Architectural design of few-shot image segmentation model used to segment 
diseased areas from leaf images 

𝑆𝑒𝑔𝐿𝑜𝑠𝑠஼஼ா = −
1

𝑁
෍ 𝑌௚௠௔௦௞

௜ log(𝑌௣௠௔௦௞
௜ )

ே

௜ୀଵ

 (5.2) 

𝑆𝑒𝑔𝐿𝑜𝑠𝑠௝௔௖௖௔௥ௗ = 1 −
1

𝑁
෍

ห𝑌௚௠௔௦௞
௜ ∩ 𝑌௣௠௔௦௞

௜ ห

ห𝑌௚௠௔௦௞
௜ ∪ 𝑌௣௠௔௦௞

௜ ห

ே

௜ୀଵ

 (5.3) 

The flow of plant disease diagnosis and severity estimation through the proposed 

framework is given in the testing or inference stage of Figure 5.1. It can be observed 

from this figure that, in order to diagnose disease in a symptomatic leaf image, first, it 

is passed through the trained few-shot image classification model, which classifies the 

given leaf image into either healthy or one of diseased classes. If the given leaf image 

is classified as diseased, then only it is passed to the few-shot image segmentation 

model, which generates its segmentation mask. This segmentation mask encompasses 

of three values, i.e., 0 is for background, 1 is for healthy pixels, and 2 is for diseased 

pixels. After getting the segmentation mask from the few-shot image segmentation 

model, the disease severity is calculated by computing the percentage of diseased pixels 
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present in the given leaf image out of the total leaf pixels, i.e., sum of healthy and 

diseased pixels. The formula to compute the disease severity with the help of predicted 

segmentation mask has been given in equation 5.4, where 𝑁ௗ and 𝑁௛ represents the 

diseased and healthy pixels of segmented leaf image, respectively.  

𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 (𝑖𝑛 %) =
𝑁ௗ

𝑁ௗ + 𝑁௛
× 100 (5.4) 

In the next section, the experiments performed in this chapter and the results obtained 

during experimentation have been discussed. 

5.4. Experimental Study and Results 

Experimentation of the research work presented in this chapter has been carried out on 

Nvidia DGX Server, which has been equipped with an Intel Xeon CPU, 528 Gigabytes 

of RAM, and Nvidia Tesla V100-SXM2 32 Gigabyte GPU. Scripts for the 

experimentation are written in the Python programming language, although other 

programming languages can also be used for experimentation. Furthermore, the models 

of the proposed framework are implemented using the Keras library, which is 

embedded in Tensorflow 2.6.0 (Chollet F. , 2015). This section is divided into three 

subsections. Subsection 5.4.1 provides the description of the Apple Tree Leaf Disease 

Segmentation (ATLDS) dataset, which is utilized to evaluate the effectiveness of the 

proposed PDSE-Lite framework. The details of different experiments conducted in the 

research work of this chapter are given in subsection 5.4.2. Furthermore, subsection 

5.4.3 presents and discusses the results obtained from experimentation. 

5.4.1. Dataset Description 

In this chapter, the ATLDS dataset (Feng Jingze & Chao Xiaofei, 2022) has been 

employed to test the effectiveness of the PDSE-Lite framework in detecting plant 

diseases with severity estimation. This dataset comprises of healthy and four types of 

diseased apple tree leaf images, i.e., Alternaria Leaf Spot, Brown Spot, Gray Spot, and 

Rust. Few leaf images from each class of the ATLDS dataset, along with their annotated 

segmentation masks, are given in Figure 5.5, and their class-wise distribution is 

presented in Table 5.4. 
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The leaf images of ATLDS dataset were captured under varying degrees of disease, 

with approximately 51.9% acquired in controlled laboratory settings and 48.1% 

collected from real cultivation fields. These images were gathered across varied 

weather conditions and different times of the day. Furthermore, this dataset comprises 

of annotated segmentation masks corresponding to each leaf image of this dataset. 

 

Figure 5.5: Leaf images representing each class within the ATLDS dataset, along with 
their annotated segmentation masks. The black, green, and red colors in segmentation 
masks represent the background, healthy, and diseased pixels, respectively 

 
Table 5.4: Class-wise distribution of the ATLDS dataset 

Class of leaf image Alternaria leaf spot  Brown spot Gray spot Healthy Rust Total 

Number of instances 278 215 395 409 344 1641 

 

The details of experimentation performed to evaluate the performance of the proposed 

PDSE-Lite framework have been provided in the following subsection of this chapter. 

5.4.2. Experimental Setup 

The proposed framework has been designed and implemented in two stages. In the first 

stage, a lightweight CAE model has been built to reconstruct leaf images from the 

original leaf images with minimum reconstruction loss. In the second stage, a few-shot 

image classification and segmentation models are developed to identify plant diseases 

and segment diseased areas from symptomatic leaf images. The details of 

experimentation done to train and test the models of PDSE-Lite frameworks are given 

below: 
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Experiment 1: Training CAE Model of the PDSE-Lite Framework 

In the first stage of the PDSE-Lite framework, a lightweight CAE model is designed 

and developed to reconstruct leaf images from original leaf images with minimal 

reconstruction loss. In order to train this model, the ATLDS dataset’s leaf images are 

randomly divided into training, validation, and testing subsets with 70:15:15 ratio of 

sizes. This model is trained via Adam optimizer to minimize the NRMSE reconstruction 

loss. During training of the CAE model, the batch size has been kept as 32, and the 

number of epochs is 500. Furthermore, the ReLU activation function is applied to every 

convolutional layer of the CAE model. In order to prevent this model from overfitting, 

Keras’ Early-stopping callback has been utilized with a patient value of 20. The values 

of these hyperparameters have been obtained through extensive experimentation. Next 

subsection discusses the experimental details to evaluate the performance of the few-

shot image classification model of the PDSE-Lite framework in detecting diseases from 

leaf images. 

Experiment 2: Training Few-Shot Image Classification Model of the 

PDSE-Lite Framework for Plant Disease Detection 

In the second stage of the PDSE-Lite framework, a k-Shot (few-shot model trained on 

k leaf images per class) image classification model has been developed to detect plant 

diseases through their digital leaf image, where 𝑘 ∈ {1,2, … , 5}. Furthermore, ቔ
ே೎ି௞

ଶ
ቕ 

and ቒ
ே೎ି௞

ଶ
ቓ leaf images from different classes of dataset have been utilized for validating 

and testing the few-shot image classification model, where 𝑁௖ is the number of leaf 

images present in 𝑐௧௛ class of ATLDS dataset. This model is trained for 100 epochs 

with a batch size of 𝑘 to minimize categorical cross-entropy loss (defined in equation 

5.1.) using the Adam optimizer, and the ReLU activation function is utilized in every 

convolutional layer of the model.  

Additionally, Early stopping callback of Keras with patience value 10 is applied during 

model training to prevent it from overfitting. Extensive experimentation has been 

conducted to determine the values of the aforementioned hyperparameters. This 

model’s performance is compared with eight different state-of-the-art CNN 
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architectures, i.e., MobileNetV2 (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018), 

InceptionV3 (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016), GoogLeNet 

(Szegedy, et al., 2015), Xception (Chollet F. , 2017), ResNet-50 (He, Zhang, Ren, & 

Sun, 2016), NASNetMobile (Zoph, Vasudevan, Shlens, & Le, 2018), 

EfficientNetV2B0 (Tan & Le, 2021), and ConvNeXtTiny (Liu, et al., 2022). The details 

of experiments performed to evaluate the performance of the few-shot image 

segmentation model of the PDSE-lite framework have been given in the following 

subsection. 

Experiment 3: Training Few-Shot Image Segmentation Model of the 

PDSE-Lite Framework to Segment Diseased Areas from Diseased Leaf 

Images 

In order to estimate the severity of detected plant disease by segmenting the infected 

regions from leaf images, a k-Shot (few-shot model trained on k leaf images per class) 

image segmentation model has also been implemented in the second stage of the PDSE-

Lite framework, where 𝑘 ∈ {1,2, … ,5}. On the other hand, remaining ቔ
ே೎ି௞

ଶ
ቕ and ቒ

ே೎ି௞

ଶ
ቓ 

leaf images from different diseased classes of the ATLDS dataset divided into 

validation and testing subsets, respectively. Furthermore, this few-shot image 

segmentation model has also been trained with a batch size of 𝑘 for 100 epochs to 

minimize the sum of 𝑆𝑒𝑔𝐿𝑜𝑠𝑠஼஼ா and 𝑆𝑒𝑔𝐿𝑜𝑠𝑠௝௔௖௖௔௥ௗ (defined in equations 5.2 and 

5.3) via Adam optimizer (Kingma & Ba, 2014). Early stopping callback with patience 

value 10 is applied during model training to prevent the model from overfitting. The 

performance of this few-shot image segmentation model has been compared with U-

Net3+ (Huang, et al., 2020) and DeepLabV3+ (Chen, Zhu, Papandreou, Schroff, & 

Adam, 2018) image segmentation models using MeanIoU and Dice-Score metrics. The 

mathematical formulas of MeanIoU and Dice-Score metrics have been given in 

equations 5.5 and 5.6, respectively. In these equations, 𝑌௣௠௔௦௞
௜ , and 𝑌௚௠௔௦௞

௜  represents 

predicted and ground truth segmentation masks for 𝑖௧௛ leaf image, respectively. 

Additionally, 𝑁 denotes the number of instances taken into consideration. 
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𝑀𝑒𝑎𝑛𝐼𝑜𝑈 =
1

𝑁
෍

ห𝑌௚௠௔௦௞
௜ ∩ 𝑌௣௠௔௦௞

௜ ห

ห𝑌௚௠௔௦௞
௜ ∪ 𝑌௣௠௔௦௞

௜ ห

ே

௜ୀଵ

 (5.5) 

𝐷𝑖𝑐𝑒-𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
෍

2 × ห𝑌௚௠௔௦௞
௜ ∩ 𝑌௣௠௔௦௞

௜ ห

        ห𝑌௚௠௔௦௞
௜ ห + ห𝑌௣௠௔௦௞

௜ ห

ே

௜ୀଵ

 (5.6) 

In this section, the experimental details of the research work are discussed, and the next 

section presents the experimental results obtained from the experimentation. 

5.4.3. Results and Discussion 

In this chapter, a few-shot and lightweight framework named “PDSE-Lite” has been 

designed and developed for detecting plant diseases and estimating the severity of 

identified disease by utilizing digital plant leaf images. During the first stage of the 

proposed framework’s development, a lightweight CAE model is built, which aims to 

learn how to reconstruct leaf images from original leaf images without losing much 

information. The CAE model’s training, validation, and testing results have been given 

in subsection A. In the second stage of the proposed framework’s development, a few-

shot image classification and segmentation models are implemented. The results 

obtained from the training, validation, and testing phases of these models have been 

provided in subsections B and C, respectively. In subsection D, an ablation study to test 

the significance of the pretrained CAE model has been presented. Moreover, subsection 

E provides the statistical analysis of the proposed PDSE-Lite framework. 

A. Results Obtained from Experiment 1 

During the first phase of the proposed framework’s development, a lightweight CAE 

model is trained to reconstruct the leaf images from the original leaf images without 

losing much information. In order to ensure this, the CAE model has been trained to 

minimize the NRMSE loss between original and reconstructed leaf images. Trends of 

the CAE model’s training and validation NRMSE losses with respect to the number of 

epochs are shown in Figure 5.6. Furthermore, few leaf images and their reconstructed 

images from each class of the ATLDS dataset using the CAE model have been given 

in Figure 5.7. 
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Figure 5.6: Trend of CAE model’s training and validation loss 

It can be seen from this figure that both the training and validation NRMSE losses of 

the CAE model are infinitesimally close to zero by the end of the 500th epoch. This can 

also qualitatively be verified from Figure 5.7, in which the reconstructed leaf images 

and original leaf images look very similar to each other. Next subsection provides the 

results obtained from experiment 2, in which the performance of the few-shot image 

classification model of the PDSE-Lite framework has been evaluated. 

 

Figure 5.7: Few leaf images and their reconstructed images from each class of ATLDS 
dataset using the CAE model of the PDSE-Lite framework 

B. Results Obtained from Experiment 2 

This section provides and discusses the results obtained from experiment 2, in which a 

𝑘-Shot image classification model is developed to diagnose plant diseases through their 

leaf images. In order to select the best value of 𝑘, accuracy, precision, recall, and f1-
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measure of 𝑘-shot model for different values of 𝑘 ranging from 1 to 5 has been 

evaluated and compared in Figure 5.8 on the test subset of the ATLDS dataset. The 

models obtained by using different values of 𝑘 are referred by 1-Shot, 2-Shot, 3-Shot, 

4-Shot, and 5-Shot image classification models in this thesis. 

 

Figure 5.8: Accuracy, precision, recall, and f1-measure of various few-shot image 
classification models used to detect plant diseases  

It can be seen by Figure 5.8 that the 2-Shot image classification model has attained 

98.35% accuracy and 98.30% f1-measure on the dataset’s test subset. Moreover, the 

performances of the 3-Shot, 4-Shot, and 5-Shot models are comparable to the 2-Shot 

model. Therefore, the 2-Shot image classification model has been employed in the 

PDSE-Lite framework to detect plant diseases, as it requires a minimum number of leaf 

images for training. Performance of the best 𝑘-Shot (i.e., 2-Shot) image classification 

model has been further compared with eight state-of-the-art CNN architectures on both 

validation and test subsets of the ATLDS dataset.  

The variation of validation accuracies and losses with respect to the number of epochs 

for these models has been depicted in Figure 5.9 and Figure 5.10, respectively. It can 

be observed from these figures that the 2-Shot image classification model has achieved 

maximum accuracy and minimum loss. Furthermore, ResNet-50 achieved minimum 

accuracy and maximum loss among other models. 
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Figure 5.9: Trend of validation accuracy for the 2-Shot image classification model of 
PDSE-Lite framework and eight different CNN architectures 

 

Figure 5.10: Trend of validation loss for the 2-Shot image classification model of PDSE-
Lite framework and eight different CNN architectures 

The values of accuracy, precision, recall, and f1-measure for the 2-Shot image 

classification model of the PDSE-Lite framework and eight state-of-the-art CNN 

architectures on the test subset of the ATLDS dataset are given in Figure 5.11. It can 

be seen from this figure that the 2-Shot image classification model of the PDSE-Lite 

framework outperformed other CNN architectures with 98.35% testing accuracy and 

98.30% f1-measure. In addition, GoogLeNet, InceptionV3, Xception, MobileNetV2, 

NASNetMobile, and EfficientNetV2B0 achieved comparable performance. On the 
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other hand, ResNet-50 and ConvNeXtTiny attained minimum values for the 

aforementioned metrics. 

 

Figure 5.11: Accuracy, precision, recall, and f1-measure of 2-Shot image classification 
model of PDSE-Lite framework and eight CNN models on ATLDS dataset’s test subset 

In order to examine the lightweight nature of the 2-Shot image classification model, the 

number of trainable weight parameters employed in this model and eight other state-of-

the-art CNN architectures have been compared in Table 5.5. It can be perceived from 

this table that the 2-Shot image classification model requires the least trainable weight 

parameters, i.e., 8749, among other CNN architectures. Furthermore, ResNet-50 and 

ConvNeXtTiny architectures utilized comparable trainable weight parameters.  

The predictions obtained from the 2-Shot image classification model for some sample 

leaf images representing each class within the ATLDS dataset, along with their ground 

truth labels, have been given in Figure 5.12. It can be perceived from this figure that 2-

Shot image classification model correctly identifies the healthy and diseased classes by 

visualizing the given leaf images. The following subsection discusses the results 

obtained from experiment 3, in which the 𝑘-Shot image segmentation model has been 

developed for segmenting the infected regions from diseased leaf images. 
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Table 5.5: Number of trainable weight parameters employed in 2-Shot image 
classification of PDSE-Lite framework and eight CNN architectures 

Models Number of trainable weight parameters 

(approximately) 

GoogLeNet 7 million 

ResNet-50 25.6 million 

InceptionV3 23.9 million 

Xception 22.9 million 

MobileNetV2 3.5 million 

NASNetMobile 5.3 million 

EfficientNetV2B0 7.2 million 

ConvNeXtTiny 28.6 million 

2-Shot image classification model of PDSE-Lite framework 8749 

 

 

Figure 5.12: Predictions obtained from the 2-Shot image classification model of PDSE-
Lite framework for some sample leaf images from each class of ATLDS dataset, along 
with their ground truth labels 
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C. Results Obtained from Experiment 3 

The few-shot image segmentation model developed in experiment 3 has been evaluated 

with the help of two evaluation metrics, namely, MeanIoU and Dice-Score. The 

mathematical expressions for these metrics are given in equations 5.4 and 5.5, 

respectively. In order to choose the best value of 𝑘 ∈ {1, 2, 3, 4, 5} for 𝑘-Shot image 

segmentation model, the MeanIoU and Dice-Score have been computed for each value 

of 𝑘. The models obtained by using different values of 𝑘 are referred by 1-Shot, 2-Shot, 

3-Shot, 4-Shot, and 5-Shot image segmentation models in this thesis. The MeanIoU and 

Dice-Score for different 𝑘-shot models have been given in Figure 5.13 

It can be perceived from this figure that the MeanIoU and Dice-Score for 2-Shot, 3-

Shot, 4-Shot, and 5-Shot image segmentation models are comparable. Thus, the 2-Shot 

image segmentation model has been selected to segment the diseased from leaf images, 

as it uses minimum leaf images per class in model training. Performance of the best 𝑘-

Shot (i.e., 2-Shot) image segmentation model has been further compared with 

DeepLabV3+ and U-Net3+ image segmentation models on both validation and test 

subsets of the ATLDS dataset. 

 

Figure 5.13: MeanIoU and Dice-Score of various few-shot image segmentation models 
used to segment diseased areas from leaf images 

The plot of validation MeanIoU and loss with respect to the number of epochs for the 

2-Shot image segmentation model along with the U-Net3+ and DeepLabV3+ models is 
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given in Figure 5.14 and Figure 5.15, respectively. It can be perceived from these 

figures that the 2-Shot image segmentation model of the PDSE-Lite framework 

outperformed U-Net3+ and DeepLabV3+ models by achieving the highest validation 

MeanIoU score, i.e., 94.87% and least validation loss. On the other hand, U-Net3+ and 

DeepLabV3+ models achieved comparable performances. 

 

Figure 5.14: Plot of validation MeanIoU for the 2-Shot image segmentation model of 
PDSE-Lite framework along with U-Net3+ and DeepLabV3+ models 

 

Figure 5.15: Plot of validation loss for the 2-Shot image segmentation model of PDSE-Lite 
framework along with U-Net3+ and DeepLabV3+ models 

The performance of the 2-Shot image segmentation, U-Net3+, and DeepLabV3+ 

models on the test subset of the ATLDS dataset has been compared in Figure 5.16 using 

MeanIoU and Dice-Score. It can be observed from Figure 5.16 that the 2-Shot image 
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segmentation model outperformed the DeepLabV3+ and UNet3+ models on the test 

subset by attaining 94.54% and 97.59% MeanIoU score and Dice-Score, respectively. 

 

Figure 5.16: MeanIoU and Dice-Score of 2-Shot image segmentation model of PDSE-Lite 
framework, U-Net3+, and DeepLabV3+ models 

In order to measure the lightweight nature of 2-Shot image segmentation model, its 

number of trainable weight parameters is compared in Table 5.6 with the trainable 

weight parameters used by U-Net3+ and DeepLabV3+ models. It can be observed from 

this that the 2-Shot image segmentation model uses significantly fewer trainable weight 

parameters, i.e., 7223, as compared to the U-Net3+ and DeepLabV3+ models. 

Table 5.6: Number of trainable weight parameters used by 2-Shot image segmentation 
model, U-Net3+, and DeepLabV3+ models 

Models 
Number of trainable weight 

parameters (approximately) 

U-Net3+ 26.99 million 

DeepLabV3+ 11.85 million 

2-Shot image segmentation model of PDSE-Lite framework 7223 

 

The predicted segmentation masks for some sample leaf images from each diseased 

class of dataset and ground truth segmentation masks have been given in Figure 5.17. 
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Furthermore, the severity percentages obtained from predicted and ground truth 

segmentation masks have been computed and written above the segmentation masks. It 

can be seen from Figure 5.17 that predicted and ground truth masks are looking very 

similar to each other. In addition, the severity percentages computed for these 

segmentation masks are also comparable, which confirms the effectiveness of the 

proposed framework in plant disease severity estimation task. 

 

Figure 5.17: Predicted segmentation masks for some sample leaf images from each 
diseased class of dataset along with ground truth segmentation masks. The severity 
percentage obtained from predicted and ground truth segmentation masks have been 
written above the segmentation masks 

In the following subsection, an ablation study has been conducted to test the 

significance of the pretrained CAE model in the development of the PDSE-Lite 

framework. 

D. Ablation Study to Assess the Significance of Pretrained CAE Model 

In order to test the significance of the pretrained CAE model in the 2-Shot image 

classification and 2-Shot image segmentation models of the PDSE-Lite framework, 

these models are also trained without utilizing the pre-trained CAE model. The results 

obtained from this experiment on the test subset of ATLDS dataset have been tabulated 

in Table 5.7 along with the results of 2-Shot image classification and 2-Shot image 

segmentation models of the PDSE-Lite framework in which the pre-trained CAE model 

is employed. 
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It can be concluded from Table 5.7 that the results of 2-Shot image classification and 

2-Shot image segmentation models significantly improve when the pretrained CAE 

model has been utilized. 

Table 5.7: Results obtained with and without utilizing the pretrained CAE model in the 
2-Shot image classification and 2-Shot image segmentation models of the PDSE-Lite 
framework 

Models of PDSE-Lite 

framework 

Without pretrained CAE model With pretrained CAE model 

2-Shot image 

classification model 

Accuracy (%) 72.58 Accuracy (%) 98.35 

Precision (%) 74.64 Precision (%) 98.39 

Recall (%) 71.76 Recall (%) 98.21 

F1-Measure (%) 73.17 F1-Measure (%) 98.30 

2-Shot image 

segmentation model 

MeanIoU (%) 68.99 MeanIoU (%) 94.54 

Dice-Score (%) 72.54 Dice-Score (%) 97.59 

 

In the subsequent subsection of this chapter, statistical hypothesis testing has been 

performed to evaluate the performance of the PDSE-Lite framework in estimating plant 

disease severity. 

E. Statistical Analysis of PDSE-Lite Framework 

The applicability of the PDSE-Lite framework in estimating plant disease severity has 

also been evaluated using statistical hypothesis testing via the Student t-test on the 

severity values obtained for ground truth and predicted segmentation masks. The paired 

t-test with two samples for means assuming unequal variance is employed in this 

chapter to test the null and alternate hypothesis given in equations 5.7 and 5.8, 

respectively. In these equations 𝜇௚௧ denotes the mean of disease severity values 

obtained from ground truth segmentation masks and 𝜇௣௥௘ௗ represents the mean of 

disease severity values obtained from predicted segmentation masks. 
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𝐻଴ ≔ 𝜇௚௧ − 𝜇௣௥௘ௗ ≠ 0 (5.7) 

𝐻ଵ ≔ 𝜇௚௧ − 𝜇௣௥௘ௗ = 0 (5.8) 

During experimentation, the probability 𝑝 value is computed for the t-test at 𝛼 = 0.01, 

i.e., if the obtained 𝑝 value is lesser than 0.01, then the null hypothesis (𝐻଴) is rejected, 

and the alternate hypothesis is accepted with 99% confidence. After analyzing the 

experimental results of the t-test, 𝑝 value for the t-test is obtained as 0.008, which is 

less than 0.01. Thereby, the null hypothesis is rejected, and the alternate hypothesis is 

accepted with 99% confidence. Hence, this showcases the applicability of the PDSE-

Lite framework in precisely estimating plant disease severity.  

The proposed PDSE-Lite framework is compared in Table 5.8 with existing state-of-

the-art research works available in the literature. It can be seen from this table that the 

proposed PDSE-Lite framework has achieved state-of-the-art performance in plant 

disease detection and severity estimation despite of using minimum trainable weight 

parameters and limited number of training samples.  

Table 5.8: Comparison of proposed PDSE-Lite framework with state-of-the-art research 
works present in the literature 

Research Work Technique Crop Performance Few-

Shot 

Disease 

Detection 

Severity 

Estimation 

Number of weight 

parameters 

(Chao, Sun, Zhao, Li, 

& He, 2020) 

Xception 

DenseNet 

(XDNet) 

Apple 98.82% accuracy    10.16 million 

PDSE-Lite 

framework 

CAE and 

FSL 
Apple 

98.35% accuracy in plant 

disease detection 

   

8749 for few-shot 

image classification 

model 

97.59% Dice-Score and 

94.54% MeanIoU in 

segmenting diseased areas 

from leaf images 

7223 for few-shot 

image 

segmentation 

model 
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Hence, it can be concluded that the proposed PDSE-Lite framework has several 

advantages over existing state-of-the-art research works present in the literature. First 

advantage of the PDSE-Lite framework lies in its ability to significantly reduce the 

reliance on large-scale manually annotated datasets, thereby minimizing the human 

efforts required to create such datasets. Moreover, the lightweight nature of the PDSE-

Lite framework makes it suitable to be deployed on low-powered edge devices for on-

site plant disease monitoring and timely intervention, aiding farmers in decision-

making and crop management. 

5.5. Chapter Summary 

In this chapter, a few-shot and lightweight framework named “PDSE-Lite” was 

proposed to recognize plant diseases and estimate the severity of identified disease by 

segmenting the diseased regions of infected leaf images. The PDSE-Lite framework 

was designed and developed in two stages with the help of CAE and FSL. In the first 

stage, a lightweight CAE model was used to reconstruct the leaf images from the 

original leaf images with minimum loss of information. In the second phase of the 

proposed framework’s implementation, a few-shot image classification and 

segmentation models were developed to accurately identify plant diseases and precisely 

segment the diseased areas from given leaf images, respectively. 

Although the PDSE-Lite framework can perform plant disease detection and severity 

estimation very effectively and efficiently with the help of only two training samples 

per class. However, a recommender system is needed to assist the farmers by providing 

advisory to cure the identified plant disease at the estimated severity level. Hence, a 

recommender system named PlantD2R2S-Lite has been designed and developed in the 

next chapter of this thesis to conquer this drawback. 
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6. Plant Disease Diagnosis and Remedy 
Recommendation using Lightweight 
and Bilingual Recommender System 

This chapter presents the Lightweight Plant Disease Diagnosis and Remedy 

Recommender System named PlantD2R2S-Lite which can generate bilingual advisory 

to cure the plant diseases by diagnosing the plant disease and estimating its severity. 

The proposed recommender system is implemented as an Android mobile application 

by embedding the models of the PDSE-Lite framework directly into the application. 

Therefore, the developed mobile application can also work seamlessly in remote 

locations where Internet connectivity may not be strong. 

6.1. Introduction 
Diagnosing plant diseases and providing advisory for disease remediation is crucial for 

the agricultural sector’s growth, as it increases the crop yield and farmer’s profit. In the 

previous chapter, the PDSE-Lite framework was proposed which can identify plant 

diseases and estimate their severity very effectively when trained on two leaf images 

per class. Moreover, the models used in the PDSE-Lite framework were lightweight in 

terms of the number of trainable weight parameters and thereby can be deployed in any 

low computational powered devices for on-site plant disease monitoring. However, it 

cannot assist farmers in taking the necessary steps to cure the identified plant disease. 

Thus, a recommender system is needed to support the farmers by providing advisory to 

remediate the identified plant disease.  

In literature, various agricultural researchers have designed and developed different 

frameworks for automatic plant disease diagnosis and remedy recommendation 

(Siddiqua, Kabir, Ferdous, Ali, & Weston, 2022; Tembhurne, et al., 2023; 

Balasubramanian, et al., 2023; Ngugi, Abdelwahab, & Abo-Zahhad, 2020). However, 

none of the existing research work has considered the disease severity to provide the 

advisory for disease remediation, as it can significantly affect the advisory for curing 

the plant disease. Moreover, some of the existing frameworks are based on client-server 

architecture in which the Farmer (Client) captures the image of an infected leaf through 
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their smartphone, and then this image is sent to the centralized server. Afterward, the 

server identifies the disease using the received leaf image, and then the corresponding 

remedy is recommended to the farmer. This process requires an active Internet 

connection, which may not be available in remote locations. Hence, it limits the usage 

of existing frameworks in the plant disease diagnosis process and hampers in-time 

delivery of advisory for curing plant diseases. 

Therefore, in order to conquer the aforementioned limitations, a lightweight and few-

shot recommender system named PlantD2R2S-Lite is proposed in this chapter for plant 

disease diagnosis and generating disease remediation advisory. The proposed 

PlantD2R2S-Lite framework is developed as an Android mobile application for 

automatic plant disease identification and severity estimation. Furthermore, it also 

facilitates farmers in both English and Hindi language. 

In this research work, the PlantD2R2S-Lite can diagnose and provide remedies for two 

diseases of Apple tree leaves, namely, Alternaria Leaf Spot and Brown Spot 

(Marssonina Leaf Blotch). The healthy and diseased leaf images of Apple trees are 

taken from the ATLDS dataset (Feng Jingze & Chao Xiaofei, 2022). However, the 

system can be trained to diagnose and provide remedies for other plant diseases as well. 

The proposed framework utilizes the PDSE-Lite framework’s 2-shot image 

classification and segmentation models for plant disease identification and severity 

estimation, respectively (Bedi, Gole, & Marwaha, 2024). Nevertheless, any DL based 

image classification and segmentation models can be used in the application for 

identifying diseases in plants and severity estimation of diagnosed disease.  

The advisory for curing the diagnosed plant disease at the estimated severity value of 

disease has been generated by fine-tuning the Bidirectional Encoder Representations 

from Transformer (BERT) model (Devlin, Chang, Lee, & Toutanova, 2019). The 

BERT model is fine-tuned on the text of two research papers (Nabi, et al., 2022; Madhu 

GS, Un Nabi, Iqbal Mir, & Hassan Raja, 2020) which described the management 

practices required for the ailment of Alternaria Leaf Spot, Brown Spot (Marssonina 

Leaf Blotch) diseases of Apple tree leaves. However, one can also fine-tune the BERT 

model to generate advisory of other plant diseases in a similar way. Moreover, all DL 

models utilized in the PlantD2R2S-Lite framework have been embedded into the mobile 
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application. Thereby, it can also work seamlessly in remote locations where Internet 

connectivity may not be strong. 

Rest of this chapter is organized into four sections. Section 6.2 discusses the details of 

different frameworks developed in the literature for plant disease diagnosis and their 

remedy recommendation. In section 6.3, the proposed PlantD2R2S-Lite framework has 

been explained. Section 6.4 provides the details of experimentation done in this 

research work to evaluate the PlantD2R2S-Lite application’s effectiveness and the 

results obtained from experimentation. Lastly, section 6.5 summarizes the chapter. 

6.2. Related Work 
In literature, various researchers have proposed different frameworks to diagnosis 

diseases in plants and recommend remedies for their cure. For example, Shrimali S 

(Shrimali, 2021) developed a mobile application named “PlantifyAI” for identifying 

different diseases from plants. The author utilized the PlantVillage dataset for training 

sixteen different CNN models to get the best model for plant disease detection. Out of 

the sixteen CNN models, MobileNetV2 with Canny Edge Detection filters 

outperformed other counterparts by achieving 95.7% accuracy and 96.1% f1-measure. 

Thereafter, the trained MobileNetV2 model was converted into tflite format for further 

deploying it into the Android mobile application using the Tensorflow Lite library of 

Python. Their mobile application also provides the advisory for the ailment of identified 

disease. Similar, work was also done by Ng et al. (Ng, Lin, Chuah, Tan, & Leung, 2021) 

for identifying diseases from grape plant leaf images. They have trained the Faster-R-

CNN model for localizing infected lesions in grape plant leaf images. They also 

converted the trained model to tflite format for using it in Android mobile application. 

Their mobile application does not provide advisory for the remediation of diagnosed 

diseases. 

Ahmed et al. (Ahmed & Reddy, 2021) developed an Android mobile application for 

identifying plant diseases from digital leaf images. They utilized the PlantVillage 

dataset for training a novel CNN model having approximately four million trainable 

weight parameters. As per their research work, the CNN model achieved 94% accuracy 

in detecting plant diseases. The authors of the paper developed an Android mobile 

application that can identify the disease of plants with the help of trained CNN model 
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deployed on a centralized server. In another work, Kumar et al. (Kumar, Raghavendran, 

Silambarasan, Kannan, & Krishnan, 2023) developed a cloud-based framework named 

Deeplens Classification and Detection Model (DCDM) to diagnose diseases from plant 

leaf images. Their proposed solution was built on the SageMaker framework of the 

Amazon Web Services (AWS) portal, which utilizes the PlantVillage dataset for 

training. The major disadvantage of the aforementioned research works (Ahmed & 

Reddy, 2021; Kumar, Raghavendran, Silambarasan, Kannan, & Krishnan, 2023) is that 

they send the suspected leaf image to the centralized server for disease detection, which 

cannot work if the mobile device does not have an active Internet connection. 

Moreover, they do not provide remedies in their application for curing the identified 

disease. 

Janarthan et al. (Janarthan, Thuseethan, Rajasegarar, & Yearwood, 2022) developed a 

novel web-based framework named “Plant Pathology on Palms (P2OP)” for detecting 

plant diseases from farm fields. They proposed a novel model for plant disease 

detection based on CNN embedded Siamese Networks. They trained it on the 

combination of three datasets, namely, the Apple dataset (Thapa, Zhang, Snavely, 

Belongie, & Khan, 2020), Citrus leaf dataset (Rauf, et al., 2019), Tomato leaf images 

extracted from the PlantVillage dataset (Hughes, Salathé, & others, 2015). 

Furthermore, their proposed model achieved 97.35%, 97.01%, and 96.36% accuracy in 

detecting diseases of Apple, Citrus, and Tomato leaves, respectively. Thereafter, the 

authors of paper (Janarthan, Thuseethan, Rajasegarar, & Yearwood, 2022) converted 

their model into tflite format for further deployment on mobile devices. Rimon et al. 

(Rimon, Islam, Dey, & Das, 2022) built an Android mobile application named 

“PlantBuddy” for plant disease identification through their digital leaf images. They 

trained MobileNetV2 and InceptionV3 CNN models on the PlantVillage dataset 

(Hughes, Salathé, & others, 2015) for identifying plant diseases through smartphones. 

As per their paper, the MobileNetV2 model outperformed the InceptionV3 model by 

achieving 95.75% accuracy. The authors also provided the advisory to cure the 

identified disease along with a facility to contact the nearest agricultural office based 

on the user’s current location. 



6. Plant Diseases Diagnosis and Remedy Recommendation using Lightweight and Bilingual 
Recommender System 

129 

Yulita et al. (Yulita, Amri, & Hidayat, 2023) built an Android mobile application for 

Tomato plant disease diagnosis. Their application utilized the DenseNet-201 CNN 

model for diagnosing diseases in Tomato plants, and it obtained an accuracy of 95.4% 

in detecting nine diseases of Tomato plants. In order to facilitate mobile-based disease 

diagnosis, the authors of paper (Yulita, Amri, & Hidayat, 2023) embedded the trained 

DenseNet-201 model in the mobile application via the Tensorflow Lite library of 

Python. In another study, Khan et al. (Khan, Nawaz, Kshetrimayum, Seneviratne, & 

Hussain, 2023) utilized the ViT model for disease detection in Tomato plants. In their 

paper, authors referred the Transformer model as “TomFormer” and its training was 

done on tomato plant leaf images obtained from three datasets, namely, PlantDoc, 

PlantVillage, and KuTomaDATA (collected from farm fields of Abu-Dhabi). 

Furthermore, their proposed TomFormer model achieved 87%, 81%, and 83% accuracy 

on the above-mentioned datasets, respectively. They also deployed the proposed model 

in a robotic device for easy and accurate identification of disease in farm fields.  

Pineda et al. (Pineda Medina, et al., 2024) explored the potential of five predefined 

CNN models, namely, VGG-16, VGG-19, InceptionV3, MobileNetV2, and Xception, 

in diagnosing Potato plant diseases. These models were trained on Potato plant leaf 

images extracted from the PlantVillage dataset. The authors claimed in their paper that 

the MobileNetV2 model outperformed others by attaining 98.7% accuracy. After 

finding the best model among others, the authors of the paper developed an Android 

mobile application to facilitate the farmers in disease identification. Elinisa and Mduma 

(Elinisa & Mduma, 2024) evaluated the efficacy of their custom CNN model in Banana 

plant disease detection. As per the paper, their proposed model achieved 80.77% 

accuracy. This CNN model is converted to tflite format to be further utilized in the 

development of Android mobile application. This paper also provided the advisory for 

curing the identified disease. However, they have not considered the disease severity 

for advisory generation. 

It can be concluded from the above discussion that most of the applications developed 

in literature can identify plant diseases and some of these applications can also provide 

advisory for disease remediation. However, the advisory for disease ailment given by 

these applications does not consider the severity of identified disease, which can 
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significantly affect the disease management practices. Moreover, the mobile 

applications developed in research work done by Ahmed and Reddy (Ahmed & Reddy, 

2021) and Kumar et al. (Kumar, Raghavendran, Silambarasan, Kannan, & Krishnan, 

2023) follow the client-server architecture in which an active Internet connection is 

required for diagnosing plant diseases which limits the usage of their systems in remote 

locations. Hence, in order to conquer these drawbacks of existing works, a novel 

lightweight and few-shot framework named PlantD2R2S-Lite has been proposed in this 

chapter. The proposed framework has been implemented as an Android mobile 

application for identifying diseases in plants and recommending advisory to cure the 

identified plant diseases even in remote locations. The developed application is 

bilingual in nature and can be used in both English and Hindi languages. The details of 

proposed PlantD2R2S-Lite framework have been described in the subsequent section. 

6.3. Proposed PlantD2R2S-Lite Framework for Plant 
Disease Diagnosis and Remedy Recommendation 

In this chapter, a lightweight and few-shot framework named PlantD2R2S-Lite is 

proposed as well as implemented to diagnose diseases in plants automatically and 

recommend different disease management measures. Unlike existing research works, 

the proposed PlantD2R2S-Lite generates advisory for managing plant diseases by 

considering the disease and its severity both. Moreover, to the best of our knowledge, 

there is no research work in the literature that has proposed a framework that can 

generate advisory to cure the disease by taking the severity value into consideration. 

The flow diagram of proposed PlantD2R2S-Lite framework is depicted in Figure 6.1, 

and its different modules are described in subsequent subsections. 

6.3.1. Leaf Image Capturing Module 

This module of the proposed PlantD2R2S-Lite framework captures the suspected leaf 

image by utilizing the digital camera of the device, i.e., mobile phone, tablet, etc. 

Alternatively, farmers can also use the leaf image stored on their device’s storage for 

disease diagnosis and to get advisory for disease remediation. In both scenarios, end-

users can crop, rotate, and rescale the leaf image obtained from the aforementioned 

methods. These options help the end-users in selecting the part of the image that 
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comprises of only leaf. This step can significantly improve the performance of disease 

diagnosis because objects other than leaves can distract the models of the PlantD2R2S-

Lite framework in disease diagnosis. After selecting the suspected leaf image either 

from the device’s camera or storage, this image is then pre-processed with the help of 

the Image pre-processing module of PlantD2R2S-Lite, which is described in the 

following subsection. 

 

Figure 6.1: Flow diagram of proposed PlantD2R2S-Lite framework 

6.3.2. Image Pre-processing Module 

The proposed PlantD2R2S-Lite framework is implemented as an Android mobile 

application using Java programming language. In the Android operating system, an 

image is stored as a Bitmap in which each pixel value of the image is represented by a 

32-bit signed integer. Each 8 bits of 32-bit signed integer from the left denotes the value 

of Alpha (Opacity), Red, Green, and Blue components of image pixels, respectively. 
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This module first resizes the captured leaf image into 256×256, as the models of the 

PDSE-Lite framework have been trained on the input size of 256×256. Thereafter, this 

module extracts the Red, Green, and Blue components of each image pixel in three 

arrays, namely red-array, green-array, and blue-array with the help of equations 6.1, 

6.2, and 6.3, respectively. In these equations, 𝐼௫,௬ represents the pixel of image 𝐼 located 

in 𝑥௧௛ row and 𝑦௧௛ column, where 𝑥, 𝑦 ∈ [0,255]. Furthermore, 0 × 𝐹𝐹 denotes the 

hexadecimal representation of the decimal number 255. Additionally, ≫ and & 

represents the “binary right shift” and “binary AND” operator, respectively. 

𝑟𝑒𝑑-𝑎𝑟𝑟𝑎𝑦 =
൫𝐼௫,௬ ≫ 16൯ & 0 × 𝐹𝐹 

255.0
 (6.1) 

𝑔𝑟𝑒𝑒𝑛-𝑎𝑟𝑟𝑎𝑦 =
൫𝐼௫,௬ ≫ 8൯ & 0 × 𝐹𝐹

255.0
 (6.2) 

𝑏𝑙𝑢𝑒-𝑎𝑟𝑟𝑎𝑦 =
𝐼௫,௬ & 0 × 𝐹𝐹

255.0
 (6.3) 

After extracting the Red, Green, and Blue components of image pixels, a three-

dimensional integer array of size 256×256×3 is formed by stacking the red-array, 

green-array, and blue-array. This three-dimensional array is further passed to the PDSE-

Lite module for detecting the probable disease in the given leaf image and estimating 

its severity. The PDSE-Lite module of the proposed framework is described in the 

subsequent subsection. 

6.3.3. PDSE-Lite Module 

This module identifies the probable plant disease, segments the diseased areas, and 

estimates the severity of diagnosed disease. The details of PDSE-Lite framework have 

been given in the previous chapter. The PDSE-Lite module first identifies the probable 

disease in the leaf image obtained from Image pre-processing module with the help of 

the 2-Shot image classification model. If the given leaf image is classified into one of 

the diseased classes, then its diseased regions are segmented via a 2-Shot image 

segmentation model. Thereafter, the severity of disease is estimated by calculating the 

percentage of diseased pixels out of the sum of healthy and diseased pixels. Once the 
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disease and its severity value are obtained, the disease curing advisory is generated with 

the help of the Remedy recommendation module of the proposed framework, which is 

described in the next subsection. 

6.3.4. Remedy Recommendation Module 

This module generates advisory to the farmers in natural language for remediation of 

identified disease under the calculated severity value. In order to generate disease 

curing advisory, a pre-trained BERT model (Devlin, Chang, Lee, & Toutanova, 2019) 

is fine-tuned on the text of two research papers (Madhu GS, Un Nabi, Iqbal Mir, & 

Hassan Raja, 2020; Nabi, et al., 2022) which have detailed descriptions of Alternaria 

Leaf Spot and Brown Spot (Marssonina Leaf Blotch) disease of Apple tree leaves and 

their management. Remedy recommendation module first builds a question, “How to 

manage disease 𝑑 at severity 𝑠”, where 𝑑 and 𝑠 represents the identified plant disease 

and severity value of 𝑑 in percentage, respectively. This question is then answered with 

the help of the BERT model’s question-answering pipeline by utilizing the text of 

research papers (Madhu GS, Un Nabi, Iqbal Mir, & Hassan Raja, 2020; Nabi, et al., 

2022). The question-answering pipeline of the BERT model generates answers to the 

given questions by finding similar text in the given text corpus. In this research work, 

the answer having maximum matching text is selected and then divided into bullet 

points for easy understanding of farmers. 

All six modules of the proposed PlantD2R2S-Lite are combined together to build an 

Android mobile application that can diagnose plant disease, estimate its severity, and 

provide advisory to cure the identified disease. Moreover, the application developed in 

this research work can be used by farmers in English or Hindi language, and it can even 

work in remote locations on any device having an Android operating system and camera 

with limited or no Internet connectivity. The following section describes the details of 

different experiments performed to evaluate the effectiveness of PlantD2R2S-Lite 

application in plant disease diagnosis and generating advisory for their remediations. 
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6.4. Experimental Study and Results 

This section is divided into four subsections. Section 6.4.1 describes the specifications 

of different hardware and software that have been utilized in this research work for 

implementing the proposed PlantD2R2S-Lite framework. Furthermore, the 

effectiveness of proposed PlantD2R2S-Lite application has been evaluated with the help 

of ATLDS dataset, which is described in section 6.4.2. This section also discusses the 

steps performed to evaluate the performance of proposed PlantD2R2S-Lite mobile 

application in plant disease detection, severity estimation, and remedy 

recommendation. Furthermore, subsection 6.4.3 presents and discusses the results 

obtained from different experiments described in subsection 6.4.2. The features of 

PlantD2R2S-Lite application, along with its various user interfaces, are given in 

subsection 6.4.4. 

6.4.1. Hardware and Software Specifications 

Implementation of the proposed PlantD2R2S-Lite framework has been done on a Dell 

G3 3500 laptop having Intel® Core™ i7-10750H CPU, 32 GB RAM, and Nvidia 

GTX1650 GPU with 4GB GPU memory. Moreover, the Samsung A54 5G mobile has 

an Exynos 1380 Octa-core CPU with 8GB RAM and 256 GB internal storage, and it 

has been utilized to test and execute the Android application developed in this research 

work. The Dell G3 3500 laptop is running on Windows 11 Home edition with 23H2 

version, and the Samsung A54 5G mobile is running on One UI 6.1 (powered by 

Samsung) based on the Android 14 operating system. 

PyCharm professional edition version 2023.3.4 and Android Studio Iguana (version 

2023.2.1) have been used in the work to write Python scripts and develop the 

PlantD2R2S-Lite Android mobile application, respectively. The user interface of the 

mobile application is developed with the help of eXtensible Markup Language (XML), 

and its working is implemented through Java programming language. Additionally, 

Tensorflow version 2.4.4 has been used to convert the disease detection and 

segmentation models of the PDSE-Lite framework into tflite format for embedding 

these models into the mobile application. Tensorflow Lite libraries 

(“org.tensorflow:tensorflow-lite-support:0.1.0”, “org.tensorflow:tensorflow-lite-meta 
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data:0.1.0”, “org.tensorflow:tensorflow-lite-gpu:2.3.0”) for Android operating system 

has also been imported from Maven Repository into Android Studio for interacting with 

the pre-trained disease detection and segmentation models. Moreover, the 

“com.github.yalantis:ucrop:2.2.6” library provides the image cropping functionality in 

the developed mobile application, and “me.biubiubiu.justifytext:library:1.1” aligns the 

text of advisory provided by the application.  

The advisory for curing the identified disease in the given leaf image under measured 

severity value is generated via the pre-trained BERT model imported from the cdQA 

library (Pietsch, et al., 2019). Next subsection provides the description of ATLDS 

dataset, which is used to evaluate the effectiveness of mobile application. Moreover, 

the details of different experiments that have been conducted to evaluate the 

performance of the proposed PlantD2R2S-Lite mobile application are also included in 

the following subsection. 

6.4.2. Experimentation to Evaluate the Performance of 

Proposed PlantD2R2S-Lite Framework 

This research work utilizes the healthy and diseased leaf images of Apple trees infected 

with Alternaria Leaf Spot and Brown Spot (Marssonina Leaf Blotch) disease. These 

images are extracted from the ATLDS (Feng Jingze & Chao Xiaofei, 2022) dataset to 

measure the effectiveness of PlantD2R2S-Lite mobile application in plant disease 

detection and severity estimation. The Apple tree leaf images belonging to the ATLDS 

dataset have been taken at different stages of infection and varying weather conditions.  

Moreover, approximately 52% of leaf images were captured in the controlled 

environment of the laboratory, and 48% of leaf images were taken from real farm fields. 

This dataset also consists of segmentation masks for each leaf image to highlight the 

diseased and leaf regions in the image. The ATLDS dataset comprises of 278, 215, and 

409 leaf images belonging to Alternaria Leaf Spot, Brown Spot, and Healthy class, 

respectively. Some healthy and diseased leaf images and their segmentation masks 

obtained from ATLDS dataset are shown in Figure 6.2. 

In order to evaluate the effectiveness of PlantD2R2S-Lite mobile application, thirty 

healthy and diseased leaf images of Apple trees infected from Alternaria Leaf Spot and 
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Brown Spot (Marssonina Leaf Blotch) have been extracted randomly from the ATLDS 

dataset. These leaf images are utilized to measure the performance of application’s 

disease detection abilities based on accuracy, precision, recall, and f1-measure metrics 

(Zaki & Wagner Meira, 2014). Furthermore, the ability of PlantD2R2S-Lite mobile 

application to segment diseased areas from leaf images has been assessed via MeanIoU 

and Dice-Score metrics defined in equations 5.5 and 5.6, respectively. 

 

Figure 6.2: Some healthy and diseased leaf images, along with their segmentation masks 
obtained from ATLDS dataset 

Effectiveness of the developed mobile application’s severity estimation abilities has 

been evaluated by performing statistical hypothesis testing on actual and estimated 

disease severity values with the help of the Student-t-test. This statistical testing has 

been done to test null (𝐻଴) and alternate (𝐻ଵ) hypotheses are given in equation 6.4 and 

6.5, respectively, where 𝑠௚ഥ  and 𝑠௘ഥ  represents the mean of actual and estimated disease 

severity values. Moreover, the probability (𝑝) is calculated in the Student-t-test at 𝛼 =

0.01 or 99% confidence interval. 

𝐻଴: 𝑠௚ഥ − 𝑠௘ഥ ≠ 0 (6.4) 

𝐻ଵ: 𝑠௚ഥ − 𝑠௘ഥ = 0 (6.5) 
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Next subsection discusses the results obtained from different experiments conducted in 

this research work to validate the PlantD2R2S-Lite application’s effectiveness. 

6.4.3. Experimental Results 

This subsection provides and discusses the results obtained from different experiments 

conducted in this research work to evaluate the performance of the PlantD2R2S-Lite 

mobile application. These results are obtained on thirty healthy and diseased leaf 

images of Apple trees infected with Alternaria Leaf Spot and Brown Spot disease. 

The values obtained for accuracy, precision, recall, and f1-measure metrics for healthy 

and diseased leaf images infected from the aforementioned diseases have been plotted 

in Figure 6.3. The results plotted in Figure 6.3 demonstrate that the PlantD2R2S-Lite 

application has detected Alternaria Leaf Spot disease with 93.33% accuracy and 

94.92% f1-measure. On the other hand, leaf images infected with Brown Spot disease 

are diagnosed with 96.67% accuracy and f1-measure. Additionally, the healthy leaf 

images have been classified with 96.67% accuracy and 95.08% f1-measure via the 

PlantD2R2S-Lite mobile application. 

 

Figure 6.3: Accuracy, precision, recall, and f1-measure of PlantD2R2S-Lite application for 
detecting healthy or diseased Apple tree leaf images infected from Alternaria Leaf Spot 
and Brown Spot 

Performance of mobile application in segmenting diseased areas from leaf images has 

been measured in terms of MeanIoU and Dice-Score metrics. The values for these 

metrics have been plotted in Figure 6.4. which demonstrates that PlantD2R2S-Lite can 
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segment the diseased lesions of Alternaria Leaf Spot and Brown Spot diseases with 

94.92% and 95.04% MeanIoU, respectively. Moreover, it has achieved 96.57% and 

96.49% Dice-Score in segmenting diseased areas of Alternaria Leaf Spot and Brown 

Spot diseases, respectively. 

 

Figure 6.4: MeanIoU and Dice-score of PlantD2R2S-Lite in segmenting diseased areas 
from leaf images 

In order to evaluate the effectiveness of PlantD2R2S-Lite mobile application in disease 

severity estimation, statistical hypothesis testing has been performed with the help of 

the Student-t-test by considering actual and predicted disease severity values. The 

probability value (𝑝) is computed during experimentation at 𝛼 = 0.01, i.e., 99% 

confidence interval, and the 𝑝 value obtained from experimentation is 0.0078. As the 

𝑝 value is lesser than the value of 𝛼, therefore, the null hypothesis (given in equation 

6.4) is rejected, and the alternate hypothesis (stated in equation 6.5) is accepted with 

99% confidence interval. Hence, it can be concluded that the developed application can 

estimate the plant disease severity accurately. 

After evaluating the effectiveness of each module of the PlantD2R2S-Lite mobile 

application, its functionalities are further compared in Table 6.1 with existing mobile 

applications available in the literature. It can be observed from Table 6.1 that the 

PlantD2R2S-Lite mobile application developed in this research work performs plant 

disease diagnosis, segments diseased lesions, predicts disease severity, and generates 

recommendations to remediate the detected disease by considering the estimated 

severity level. Moreover, these functionalities are provided without any active Internet 
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connection, and hence, the proposed PlantD2R2S-Lite application can also work in 

remote locations. In order to facilitate non English speaking farmers, the application 

can also be used in Hindi language. Additionally, the mobile application designed and 

implemented in this paper requires the least space in the mobile device as compared to 

other applications developed in the literature. Therefore, it can also work on less 

computationally powered smartphones. 

Table 6.1: Comparison of functionalities provided in various mobile applications 
developed in the literature for plant disease diagnosis and remedy recommendation 

Mobile 

application 

name 

Crop/ Dataset Advisory 

( / ) 

Require 

Internet 

connection 

( / ) 

Considered 

severity in 

advisory  

( / ) 

Is 

bilingual 

( / ) 

Application 

size in 

Megabytes 

(MBs) 

Accuracy 

Potato Crop 

Diseases 

(PCD) 

Leaf images of potato plants 

extracted from the PlantVillage 

dataset 

    77.57 92.86% 

Artificial 

Intelligence 

based 

Disease 

Identification 

System for 

Crops  

(AI-DISC) 

Rice, Wheat, Maize, Tomato, 

Mustard, Cotton, Brinjal, 

Soybean, Apple, Peach, 

Kinnow, Mandarin, Lemon, 

Chickpea, Green gram, 

Clusterbean, Mothbean, 

Cucurbits, Chilli, Coriander 

    97.34 

Not 

computed 

by the 

developers 

of this 

application 

PlantD2R2S-

Lite  

Apple tree leaf images 

extracted from the ATLDS 

dataset 

    22.78 95.56% 

 

Next subsection discusses the features of PlantD2R2S-Lite application via its various 

user interfaces. 
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6.4.4. Features and User-Interfaces of PlantD2R2S-Lite 

Application 

The mobile application developed in this research work is compatible with a 

smartphone with an Android operating system version 10 or higher and a minimum of 

8GB storage along with 2GB of RAM. Moreover, camera of the device should work 

properly in order to take photographs of suspected leaf images. 

PlantD2R2S-Lite application would start with a splash screen showing its logo, and the 

screenshot of welcome screen is shown in Figure 6.5(a). Once the application is loaded, 

it shows the user interface for capturing the leaf image. The leaf image can be captured 

either from the camera or from the gallery of the mobile device. In order to start 

capturing the leaf image from the camera or gallery, the user needs to click  icon given 

in the bottom right corner of the screen shown in Figure 6.5(b). This will provide two 

choices to the user, as depicted in Figure 6.5(c). First choice is to capture the suspected 

leaf image from the camera, and second choice is to use an already captured image from 

the device gallery. 

If the user selects the second option, then the user’s device gallery is opened up (as 

shown in Figure 6.5(d)) for choosing the suspected leaf image. Once the leaf image is 

selected from the device gallery, the leaf image is displayed on the screen, as shown in 

Figure 6.5(e). Thereafter, in order to identify the probable disease in the given leaf 

image, the user needs to click the predict button highlighted with a red colored rectangle 

in Figure 6.5(e), and the diagnosis result is then prompted to the user as shown in Figure 

6.5(f). 

It can be seen from Figure 6.5(f) that an option to view the infected areas of the input 

leaf image (highlighted with a red colored rectangle) is also provided in the PlantD2R2S-

Lite application. Selecting this option will invoke the segmentation model of the PDSE-

Lite framework, which takes the input leaf image and generates its segmentation mask, 

as shown in Figure 6.5(g). In this segmentation mask, the diseased areas are highlighted 

in red color, and the healthy regions are highlighted with green color. After segmenting 

diseased areas from given leaf image, the severity of identified disease is computed as 
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per equation 5.4, and its output is displayed on the user interface of the application, as 

shown in Figure 6.5(g).  

 

Figure 6.5: User interfaces showing the working of the PlantD2R2S-Lite application 

Once the disease and its severity value are determined, the user is prompted to view 

recommendations for curing the identified disease. If the user clicks on the ‘View 

Recommendation’ option (highlighted with a red colored rectangle in Figure 6.5(g)), 

then the Remedy recommendation module is executed for generating the advisory to 

cure the identified disease under the calculated severity value. The user interface for 
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providing the advisory to cure the identified plant disease under the estimated severity 

value is given in Figure 6.5(h).  

In order to facilitate non-English speaking Indian farmers, the PlantD2R2S-Lite 

application also provides an option to switch the language of the application (as shown 

in Figure 6.6(a)) to Hindi via clicking the three dots icon present at the top right corner 

of the screen. This will allow the user to choose the default language of the application, 

as shown in Figure 6.6(b). If the user has selected Hindi language as the default 

language, all user interfaces of the application are translated into Hindi language. A 

snapshot of the PlantD2R2S-Lite application’s user interface in the Hindi language is 

given in Figure 6.6(c).  

 

Figure 6.6: User interfaces to change the language of PlantD2R2S-Lite application 

 

All of the aforementioned features of the PlantD2R2S-Lite application are provided 

without utilizing an Internet connection, as the models used in PDSE-Lite and Remedy 

recommendation modules are embedded in the application. Hence, the PlantD2R2S-Lite 

application can be used by farmers even in remote locations for diagnosing plant 

diseases and getting advisory to cure the identified disease. 
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6.5. Chapter Summary 

In this chapter, a lightweight and bilingual recommender system named PlantD2R2S-

Lite was proposed for diagnosing plant diseases through their leaf images and providing 

disease curing advisory. The proposed framework comprised of four modules, namely, 

Leaf image capturing, Image pre-processing, PDSE-Lite, and Remedy recommendation 

modules. All of these modules were integrated to develop an Android mobile 

application that can help farmers in diagnosing plant diseases, highlighting diseased 

areas of leaf image, estimating the severity of identified disease, and taking timely 

actions to cure the identified disease. The developed application can be used by farmers 

in either English or Hindi language, and it can work even in remote areas where Internet 

connectivity may not be strong. The next chapter concludes the research work presented 

in this thesis and discusses its few limitations along with the direction for future 

research. 
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7. Conclusion and Directions for Future 
Work 

This chapter concludes the research work by summarizing all the contributions made 

in the thesis. Additionally, it provides limitations of current research work and various 

future research directions to conquer these limitations. 

7.1. Thesis Summary and Contributions 
Early stage plant disease diagnosis can be helpful to minimize crop yield loss and 

maximize the farmer’s profit, and it is a big challenge in the growth of farming sector. 

A lot of work has been done in the literature in this area using various ML or DL 

techniques, but most of these techniques utilize large number of trainable weight 

parameters and large number of annotated leaf images for training. Therefore, the aim 

of this thesis is to develop a lightweight DL model which requires a smaller number of 

annotated leaf images for training, as annotating leaf images is laborious and time-

consuming task. The reason for choosing the DL model over the ML model lies in its 

ability to automatically extract important features from raw data, which eliminates the 

requirement of a separate feature extraction module. 

Hence, an attempt has been made in this thesis to first develop a lightweight DL model 

named PlantGhostNet for diagnosing a plant disease from leaf images. Although 

PlantGhostNet model has utilized significantly lesser number of trainable weight 

parameters as compared to other state-of-the-art DL models, however, they are still high 

in number. Next, a lightweight and hybrid DL model based on CAE, and CNN has been 

proposed in this thesis for detecting a plant disease from their leaf images. Though the 

hybrid DL model can identify a plant disease very efficiently and effectively, this model 

cannot diagnose multiple plant diseases with high accuracy. Therefore, in order to deal 

with this issue, a lightweight and improved ViT model named TrIncNet has been 

proposed in this thesis. 

Disease severity is required in order to take necessary steps for curing the identified 

disease as it can provide the quantitative assessment of the damage caused by the 

pathogen of the identified disease. Hence, this thesis proposed a lightweight and few-
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shot framework named PDSE-Lite for plant disease diagnosis and severity estimation. 

Lastly, an android mobile application named “PlantD2R2S-Lite” has been developed in 

this thesis to identify plant diseases after capturing the leaf image, estimate the severity 

of the identified disease, and generate an advisory for curing the plant disease. The 

developed mobile application can be used in English or Hindi language and it can also 

work in remote locations where Internet connectivity may not be strong. The major 

contributions made in this thesis are summarized below: 

Contribution 1: PlantGhostNet: Lightweight CNN Model for 

Identifying a Plant Disease 

The PlantGhostNet model has been proposed in this thesis for diagnosing a plant 

disease from their digital leaf images. This model utilized the Ghost and Squeeze-and-

Excitation modules to reduce the trainable weight parameters and improve the model’s 

performance, respectively. Ghost Module generates the feature maps in two phases. 

First, it generates few feature maps via conventional convolution operation. After that, 

the cheap linear operations were applied to the feature maps generated in the first phase 

to obtain the desired number of feature maps. Thereby, it requires lesser number of 

trainable weight parameters used to generate target feature maps as compared to 

conventional convolution operation. Squeeze-and-Excitation Module adaptively 

prioritizes each channel of the input feature map by assigning them weights, resulting 

in better performance of the model. 

The effectiveness of PlantGhostNet model was evaluated on the leaf images of peach 

plants extracted from the PlantVillage dataset, which contains healthy and diseased leaf 

images infected from Bacterial Spot disease. Experimental results demonstrated that 

the PlantGhostNet model obtained the highest accuracy along with the minimum 

number of trainable weight parameters as compared to other state-of-the-art models. 

Contribution 2: A Lightweight Hybrid DL Model based on CAE and 

CNN for Identifying a Plant Disease 

A novel lightweight hybrid DL model was designed and developed by combining the 

CAE and CNN for diagnosing single type of plant disease using their leaf images. This 

model reduced the spatial dimension of input leaf images via CAE before classifying it 
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with CNN, which resulted in significantly lesser number of training parameters. CNN 

model used the pretrained encoder block of CAE, which further reduced the training 

time of the proposed model. 

Performance of the lightweight hybrid DL model was evaluated on healthy and diseased 

leaf images of peach plants extracted from the PlantVillage dataset. Experimental 

results showed that the proposed model achieved slightly less accuracy than the 

PlantGhostNet model, but it utilized roughly 86.41% less trainable weight parameters 

as compared to the PlantGhostNet model. 

Contribution 3: TrIncNet: Lightweight and Improved Vision 

Transformer Model for Identifying Multiple Plant Diseases 

Trans-Inception Network (TrIncNet) model was proposed to diagnose multiple plant 

diseases of different crops. TrIncNet encompasses of multiple linearly connected 

Trans-Inception blocks, which was designed by replacing the MLP module with the 

Inception module in the encoder block of the ViT model. As a result of this replacement, 

the Trans-Inception block utilized 32.67% lesser number of trainable weight parameters 

than the original encoder block of ViT. Unlike the ViT model, the TrIncNet model also 

uses the skip connections around each Trans-Inception block to make the model more 

resistant towards the vanishing gradient problem. 

In order to showcase the applicability of TrIncNet model in detecting plant diseases, it 

has been trained and tested on two plant disease datasets, namely PlantVillage and 

Maize datasets. Experimental results showed that the TrIncNet model outperformed 

existing state-of-the-art research works by achieving 99.93% and 96.93% accuracies on 

PlantVillage and Maize datasets, respectively. 

Contribution 4: PDSE-Lite: Lightweight and Few-Shot Framework 

for Plant Disease Severity Estimation 

Plant Disease Severity Estimation-Lite (PDSE-Lite) framework was proposed for 

estimating the severity of identified plant diseases. This framework was designed and 

developed in two stages. In the first stage, a lightweight CAE model was implemented 

and trained to reconstruct leaf images from original leaf images with minimal 
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reconstruction loss. In the subsequent stage, pretrained layers of the CAE model built 

in the first stage were utilized to develop the few-shot image classification and 

segmentation models. 

The proposed PDSE-Lite framework can diagnose multiple plant diseases of a crop and 

estimate the severity of identified disease. Performance of the PDSE-Lite framework 

has been evaluated on the ATLDS dataset, which comprises of healthy and four types 

of diseased leaf images of apple trees. Experimental results demonstrated that the 

proposed framework achieved 98.35% accuracy in disease detection and 94.54% 

MeanIoU value in segmenting diseased areas from leaf images by utilizing only two 

leaf images per class for model training. Therefore, the PDSE-Lite framework reduces 

the reliance on large manually annotated datasets and minimizes the human efforts 

required to create such datasets. This framework can also estimate the severity of 

identified disease by calculating the percentage of diseased pixels out of the total leaf 

pixels (i.e., sum of healthy and diseased pixels) present in the segmented leaf image. 

The severity estimation ability of the PDSE-Lite framework was verified by applying 

the Student-t-test on the actual and predicted severity values. 

Contribution 5: PlantD2R2S-Lite: Lightweight and Bilingual Plant 

Disease Diagnosis and Remedy Recommender System 

A lightweight Plant Disease Diagnosis and Remedy Recommender System named 

PlantD2R2S-Lite was proposed to diagnose plant diseases and provide advisory to cure 

them. The proposed framework was comprised of four modules, namely, Leaf image 

capturing module, Image pre-processing module, PDSE-Lite module, and Remedy 

recommendation module. 

Leaf image capturing module uses the device camera or gallery for capturing the leaf 

image. This leaf image is then passed to the Image pre-processing module, which 

resizes the image into 256 × 256 dimension and converts it to a three-dimensional 

array. Thereafter, this three-dimensional array is sent to the PDSE-Lite module, which 

identifies the disease from the leaf image. Furthermore, it also segments the diseased 

lesions of input leaf images and calculates the disease severity by computing the 

percentage of diseased pixels present in the segmented leaf image. Once the disease 
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and its severity value are found then the Remedy recommendation module generates 

the disease remediation advisory. This advisory has been generated by fine-tuning the 

pre-trained BERT model on the text of two research papers that have the description 

and disease management practices of apple tree leaves. 

The proposed PlantD2R2S-Lite framework is implemented as an Android mobile 

application. It provides a simplified and bilingual user interface for farmers through 

which they can diagnose diseases of their plants and get remedies to cure them. 

Effectiveness of the proposed PlantD2R2S-Lite mobile application was evaluated on 

thirty randomly selected leaf images of apple trees from Alternaria Leaf Spot, Brown 

Spot, and Healthy classes of the ATLDS dataset. Experimental results revealed that the 

PlantD2R2S-Lite mobile application can effectively and efficiently diagnose plant 

disease from the captured leaf images. Additionally, it can also segment the diseased 

lesions from leaf images and provide the severity value of identified disease accurately.  

Hence, the PlantD2R2S-Lite application designed and developed in this thesis can help 

farmers in diagnosing plant diseases, highlighting diseased areas of leaf image, 

estimating the severity of identified diseases, and taking timely actions to cure the 

identified disease even in remote areas where internet connectivity may not be strong. 

Next section discusses a few limitations of the research work presented in this thesis, 

along with some directions for future research work. 

7.2. Limitations and Directions for Future Work 
The research work presented in this thesis can identify plant diseases and estimate the 

severity of identified disease under the assumption that the leaf is infected only one 

disease at a time. However, in the real world, leaves can be infected with multiple 

diseases at a time, and the models or frameworks presented in this thesis cannot identify 

co-occurring plant diseases. PlantD2R2S-Lite application developed in this thesis works 

only in English and Hindi language, which limits its usage to the farmers who know 

either of these languages. These limitations of the research work presented in this thesis 

can be conquered in the future by extending this work. Some future research directions 

related to the work presented in this thesis are given below: 
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1. In the future, the dataset which encompasses of leaf images suffering from multiple 

plant diseases simultaneously, can be utilized for training a cost-effective DL model 

that can identify co-occurring plant diseases. 

 

2. The proposed PlantD2R2S-Lite application can be extended to provide advisory for 

curing the identified plant disease in other regional languages. This would help the 

regional farmers who do not know either English or Hindi language. 

 

3. The PlantD2R2S-Lite application can also be extended to give spoken disease 

remediation advisory in multiple languages and dialects. 
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Appendix A 
 

Asymptomatic analysis on the number of weight parameters used by the Inception 

module 

Let the input to the Inception module is 𝐼 ∈ ℝெ×ே containing 𝑀 patches, and each patch 

is of size 𝑁. Since the Inception module uses two-dimensional convolution operations, 

therefore 𝐼 must be reshaped to 𝐼ᇱ ∈ ℝ√ே×√ே×ெ, assuming that the value of 𝑁 is a 

perfect square (i.e., 𝑁 ∈ 2ଶ௜, 𝑖 = 1,2,3, …). The asymptomatic analysis is done on each 

operation present in the Inception module (shown by numbers in Figure A.1). 

 

Figure A.1: Operations of Inception module 

The number of weight parameters used in convolution operation can be expressed by 

equation A.1. 

𝑊 = 𝐼ி × 𝐷 × 𝑘 × 𝑘 (A.1) 

where: 

𝑊: number of weight parameters used in convolution operation 

𝐼ி: number of filters applied 

𝐷: depth of input feature map 

𝑘: convolution filter’s size 
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Let the number of filters used in operation 𝑖 is 𝐹௜, where 𝑖 = 1,2, … , 7 (shown in Figure 

A.1). Then the trainable number of weight parameters used in each operation is 

computed in Table A.1. 

Table A.1: Trainable weight parameters used in each operation of the Inception module 

Operation 

number 

Input shape Output shape Number of weight parameters 

(asymptomatically) 

Operation 1 √𝑁 × √𝑁 × 𝑀 √𝑁 × √𝑁 × 𝐹ଵ 𝐹ଵ × 𝑀 × 1 × 1 = 𝐹ଵ × 𝑀 =  𝒪(𝐹ଵ𝑀) 

Operation 2 √𝑁 × √𝑁 × 𝑀 √𝑁 × √𝑁 × 𝐹ଶ 𝐹ଶ × 𝑀 × 1 × 1 = 𝐹ଶ × 𝑀 = 𝒪(𝐹ଶ𝑀) 

Operation 3 √𝑁 × √𝑁 × 𝑀 √𝑁 × √𝑁 × 𝐹ଷ 𝐹ଷ × 𝑀 × 1 × 1 = 𝐹ଷ × 𝑀 = 𝒪(𝐹ଷ𝑀) 

Operation 4 √𝑁 × √𝑁 × 𝑀 √𝑁 × √𝑁 × 𝑀 0 (max-pooling operation does not require 

any weight parameters) 

Operation 5 √𝑁 × √𝑁 × 𝐹ଶ √𝑁 × √𝑁 × 𝐹ହ 𝐹ଶ × 𝐹ହ × 3 × 3 = 9 × 𝐹ଶ × 𝐹ହ = 𝒪(𝐹ଶ𝐹ହ) 

Operation 6 √𝑁 × √𝑁 × 𝐹ଷ √𝑁 × √𝑁 × 𝐹଺ 𝐹ଷ × 𝐹଺ × 5 × 5 = 25 × 𝐹ଷ × 𝐹଺ = 𝒪(𝐹ଷ𝐹଺) 

Operation 7 √𝑁 × √𝑁 × 𝑀 √𝑁 × √𝑁 × 𝐹଻ 𝐹଻ × 𝑀 × 1 × 1 = 𝐹଻ × 𝑀 = 𝒪(𝐹଻𝑀) 

 

By combining the number of weight parameters used in each operation of the Inception 

module (given in Table A.1), the total number of weight parameters used in this module 

can be calculated as 𝒪(𝐹ଵ𝑀 + 𝐹ଶ𝑀 + 𝐹ଷ𝑀 + 𝐹ଶ𝐹ହ + 𝐹ଷ𝐹଺ + 𝐹଻𝑀). If 𝐹 =

max(𝐹ଵ, 𝐹ଶ, 𝐹ଷ, 𝐹ହ, 𝐹଺, 𝐹଻), then the above expression can be simplified to 𝒪(4 × 𝐹𝑀 +

2 × 𝐹ଶ) ⇒ 𝒪(𝐹𝑀 + 𝐹ଶ). Hence, the total number of trainable weight parameters 

required to implement an inexpensive Inception module can be expressed by 𝑊ூ௡௖௘௣௧௜௢௡ 

in equation A.2. 

𝑊ூ௡௖௘௣௧௜௢௡ = max(𝑀ଶ, 𝐹ଶ) = ൜
𝒪(𝑀ଶ), 𝐹 < 𝑀

𝒪(𝐹ଶ), 𝐹 ≥ 𝑀
 (A.2) 

 

 


